Skip to main content
Log in

Challenges in Quantitative High-Performance Thin-Layer Chromatography — Part 1: Influence of Densitometric Settings on the Result

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Summary

There is no doubt that high-performance thin-layer chromatography (HPTLC) can be applied as a quantitative method if the technique is properly used. Densitometry is a commonly used detection mode for quantitation in HPTLC. The influence of instrumental settings on signal intensity, peak resolution, and peak positioning was rarely described in literature. Especially, quantitation of adjacent substance zones was critical when improper combinations of these settings merge. Future trends regarding ultrathin-layer chromatography and hyphenation to scanning or imaging mass spectrometry required the consideration of these delicate points. The influence of different instrumental settings on the obtained signal intensities was demonstrated for four separated parabens (each 150 ng band−1). The maximum mean signal deviations of all four compounds were 6.9% by the optical system, 16.8% by the scan slit dimension, 7.5% by the scan speed, and 1.5% by the data resolution. The influence of these settings on the quantitation of three parabens in two skin protection creams was investigated. Depending on the selected settings, deviations of the calculated substance amount of up to 5.6% were yielded, whereby determination coefficients of the polynomial calibration curves (60–300 ng band−1) varied between 0.9985 and 0.9999. The setting of integration markers between two adjacent peaks was demonstrated to be deficient if low spatial data resolution is applied; however, this challenging task will rise in interest due to the trend towards miniaturization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kubelka, F. Munk, Z. Tech. Phys. 12 (1931) 593–601.

    Google Scholar 

  2. H.E. Hauck, O. Bund, W. Fischer, M. Schulz, J. Planar Chromatogr. 14 (2001) 234–236.

    Article  CAS  Google Scholar 

  3. I. Vovk, G. Popović, B. Simonovska, A. Albreht, D. Agbaba, J. Chromatogr. A 1218 (2011) 3089–3094.

    Article  CAS  Google Scholar 

  4. S.S. Kanyal, T.T. Häbe, C.V. Cushman, M. Dhunna, T. Roychowdhury, P.B. Farnsworth, G.E. Morlock, M.R. Linford, J. Chromatogr. A 1404 (2015) 115–123.

    Article  CAS  Google Scholar 

  5. H. Jork, Z. Anal. Chem. 236 (1968) 310–326.

    Article  CAS  Google Scholar 

  6. E. Stahl, H. Jork, Zeiss Inf. 16 (1968) 52–59.

    CAS  Google Scholar 

  7. J. Ripphahn, H. Halpaap, J. Chromatogr. 112 (1975) 81–96.

    Article  CAS  Google Scholar 

  8. V.G. Berezkin, S.S. Khrebtova, J. Planar Chromatogr. 24 (2011) 454–462.

    Article  CAS  Google Scholar 

  9. K. Kuchta, R.B. Volk, H.W. Rauwald, Pharmazie 68 (2013) 534–540.

    CAS  PubMed  Google Scholar 

  10. G.E. Morlock, G. Sabir, J. Liq. Chromatogr. 34 (2011) 902–919.

    Article  CAS  Google Scholar 

  11. A.M. Frolova, O.Y. Konovalova, L.P. Loginova, A.V. Bulgakova, A.P. Boichenko, J. Sep. Sci. 34 (2011) 2352–2361.

    CAS  PubMed  Google Scholar 

  12. S.R. Jim, A. Foroughi-Abari, K.M. Krause, P. Li, M. Kupsta, M.T. Taschuk, K.C. Cadien, M.J. Brett, J. Chromatogr. A 1299 (2013) 118–125.

    Article  CAS  Google Scholar 

  13. T.J. Kauppila, N. Talaty, P.K. Salo, T. Kotiaho, R. Kostiainen, R.G. Cooks, Rapid Commun. Mass Spectrom. 20 (2006) 2143–2150.

    Article  CAS  Google Scholar 

  14. P.K. Salo, S. Vilmunen, H. Salomies, R.A. Ketola, R. Kostiainen, Anal. Chem. 79 (2007) 2101–2108.

    Article  CAS  Google Scholar 

  15. Z. Zhang, S.N. Ratnayaka, M.J. Wirth, J. Chromatogr. A 1218 (2011) 7196–7202.

    Article  CAS  Google Scholar 

  16. T.T. Häbe, G.E. Morlock, Rapid Commun. Mass Spectrom. 29 (2015) 474–484.

    Article  Google Scholar 

  17. T.T. Häbe, G.E. Morlock, J. Chromatogr. A 1413 (2015) 127–134.

    Article  Google Scholar 

  18. G.E. Morlock, J. Liq. Chromatogr. 37 (2014) 2892–2914.

    Article  CAS  Google Scholar 

  19. S.J. Pinella, A.D. Falco, G. Schwartzman, J. Assoc. Off. Anal. Chem. 49 (1966) 829–834.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gertrud E. Morlock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Häbe, T.T., Morlock, G.E. Challenges in Quantitative High-Performance Thin-Layer Chromatography — Part 1: Influence of Densitometric Settings on the Result. JPC-J Planar Chromat 28, 426–435 (2015). https://doi.org/10.1556/1006.2015.28.6.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1006.2015.28.6.2

Key Words

Navigation