Skip to main content
Log in

Essential oil composition and antibacterial activity of Pteridium aquilinum (L.) Kuhn

  • Original Article
  • Published:
Biologia Futura Aims and scope Submit manuscript

Abstract

Introduction

The present work aims to study the chemical composition of Pteridium aquilinum (L.) Kuhn essential oil and its antibacterial activity against three important phytopathogenic Gram-negative bacteria: Erwinia amylovora, Pectobacterium carotovorum subsp. caroto-vorum, and Pseudomonas savastanoi pv. savastanoi.

Methods

The chemical composition of P. aquilinum L. essential oil produced by hydrodistillation was determined by gas chromatography-mass spectrometry. The antibacterial activity was tested using disk diffusion method and by determination of minimum inhibitory concentration values. The major components were linalool (10.29%), carvacrol (8.15%), benzaldehyde (5.95%), 2-undecanone (5.32%), and cuminaldehyde (4.57%).

Results

The essential oil tested revealed a powerful antibacterial effect against all tested strains, with inhibition zone diameters ranging from 32.0 ± 0.58 to 33.7 ± 0.88 mm.

Discussion

P. aquilinum EO contained 32.86% of oxygenated monoterpenes, which are known for their very powerful antimicrobial activities. The minimum inhibitory concentration values showed that P. aquilinum essential oil has very strong activity against E. amylovora (0.625 ul/ml), followed by P. carotovorum subsp. carotovorum (2.50 ul/ml) and P. savastanoi pv. savastanoi (5.00 ul/ml). The results obtained could contribute to the development of new potential agents for the control of bacterial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. P. (2007) Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Pub Corp, Carol Stream, IL.

    Google Scholar 

  • Adou, L., Ipou Ipou, J. (2007) Pteridium aquilinum, une pteridophyte envahissante des cultures perennes du sud de la Cote d’lvoire: quelques notes ethnobotaniques [Pteridium aquilinum, an invasive pteridophyte of perennial crops in southern Ivory Coast: some ethnobotanical notes]. Tropicultura 25, 232–234.

    Google Scholar 

  • Alamri, A., El-Newehy, M. H., Al-Deyab, S. S. (2012) Biocidal polymers: synthesis and antimicrobial properties of benzaldehyde derivatives immobilized onto amine-terminated polyacrylonitrile. Chem. Cent. J. 6, 111.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajpai, V. K., Cho, M. J., Kang, S. C. (2010) Control of plant pathogenic bacteria of Xanthomonas spp. by the essential oil and extracts of Metasequoia glyptostroboides Miki ex Hu in vitro and in vivo. J. Phytopathol. 158, 479–486.

    CAS  Google Scholar 

  • Bassole, I. H. N., Lamien-Meda, A., Bayala, B., Tirogo, S., Franz, C., Novak, J., Nebie, R. C., Dicko, M. H. (2010) Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 15, 7825–7839.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj, K. S., Laura, S. J. (2008) Antibacterial activity of some plant extracts against pathogenic bacteria Erwinia carotovora subsp. carotovora. Potato J. 35, 12–11.

    Google Scholar 

  • Boulanger, R., Crouzet, J. (2001) Identification of the aroma components of acerola (Malphigia glabra L.): free and bound flavor compounds. Food Chem. 74, 209–216.

    CAS  Google Scholar 

  • Cody, W. J., Crompton, C. W. (1975) The biology of Canadian weeds. 15. Pteridium aquilinum (L.) Kuhn. Can. J. Plant Sci. 55, 1059–1072.

    Google Scholar 

  • Dadasoglu, F., Aydin, T., Kotan, R., Cakir, A., Ozer, H., Kordali, S., Cakmakci, R., Dikbas, N., Mete, E. (2011) Antibacterial activities of extracts and essential oils of three Origanum species against plant pathogenic bacteria and their potential use as seed disinfectants. J. Plant Pathol. 93, 271–282.

    CAS  Google Scholar 

  • Dorman, H. J., Deans, S. G. (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88(2), 308–316.

    CAS  PubMed  Google Scholar 

  • Fernandez, H., Kumar, A., Angeles, R. M. (2011) Working with Ferns: Issues and Applications. Springer Science + Business Media, New York, p. 285.

    Google Scholar 

  • Froissarda, D., Fons, F., Bessiere, J. M., Buatois, B., Rapior, S. (2011) Volatiles of French ferns and “fougere” scent in perfumery. Nat. Prod. Commun. 6, 1723–1726.

    Google Scholar 

  • Gormez, A., Bozari, S., Yanmis, D., Gulluce, M., Sahin, F., Agar, G. (2015) Chemical composition and antibacterial activity of essential oils of two species of lamiaceae against phytopatho-genic bacteria. Pol. J. Microbiol. 64, 121–127.

    PubMed  Google Scholar 

  • Halarewicz, A., Szumny, A. (2010) Analysis of essential oils in leaf extracts from bracken fern, Pteridium aquilinum (L.) Kuhn. sub. aquilinum. Electronic J. Pol. Agri. Univ. 13, 20.

    CAS  Google Scholar 

  • Hassan, S. W., Umar, R. A., Dabai, Y. U., Ebbo, A. A., Faruk, U. Z. (2007) Antibacterial, phytochemical and toxicity studies of Pteridium aquilinum L. (Dennstaedtiaceae) in rabbits. J. Pharmacol. Toxicol. 2, 168–175.

    CAS  Google Scholar 

  • Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G. M., Wright, A. V. (1998) Characterization of the action of selected essential oil components on Gram negative bacteria. J. Agric. Food Chem. 46, 3590–3595.

    CAS  Google Scholar 

  • Iacobellis, N. S., Cantore, P. L., Capasso, F., Senatore, F. (2005) Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J. Agric. Food Chem. 53, 57–61.

    CAS  PubMed  Google Scholar 

  • Jantan, I., Ling, Y. E., Romli, S., Ayop, N., Ahmad, A. S. (2003) A comparative study of the constituents of the essential oils of three Cinnamomum species from Malaysia. J. Essent. Oil Res. 15, 387–391.

    CAS  Google Scholar 

  • Karami-Osboo, R., Khodaverdi, M., Ali-Akbari, F. (2010) Antibacterial effect of effective compounds of Satureja hortensis and Thymus vulgaris essential oils against Erwinia amylovora. J. Agric. Sci. Tech. 12, 35–15.

    CAS  Google Scholar 

  • Kardong, D., Upadhyaya, S., Saikia, L. R. (2013) Screening of phytochemicals, antioxidant and antibacterial activity of crude extract of Pteridium aquilinum Kuhn. J. Pharma. Res. 6, 179–182.

    CAS  Google Scholar 

  • Kotan, R., Kordali, S., Cakir, A. (2007a) Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Natur-forsch. 62, 507–513.

    CAS  Google Scholar 

  • Kotan, R., Dadasoglu, F., Kordali, S., Cakir, A., Dikbas, N., Cakmakci, R. (2007b) Antibacterial activity of essential oils extracted from some medicinal plants, carvacrol and thymol on Xanthomonas axonopodis pv. vesicatoria (Doidge) dye causes bacterial spot disease on pepper and tomato. J. Agric. Technol. 3, 299–306.

    Google Scholar 

  • Kotan, R., Cakir, A., Dadasoglu, F., Aydin, T., Cakmakci, R., Ozer, H., Kordali, S., Mete, E., Dikbas, N. (2010) Antibacterial activities of essential oils and extracts of Turkish Achillea, Satureja and Thymus species against plant pathogenic bacteria. J. Sci. Food Agric. 90, 145–160.

    CAS  PubMed  Google Scholar 

  • Kotan, R., Cakir, A., Ozerc, H., Kordalia, S., Cakmakci, R., Dadasoglu, F., Dikbase, N., Aydin, T., Kazaz, C. (2014) Antibacterial effects of Origanum onites against phytopatho-genic bacteria: possible use of the extracts from protection of disease caused by some phytopathogenic bacteria. Sci. Hortic. 172, 210–220.

    Google Scholar 

  • Murray, P., Baron, E., Pfaller, M., Tenover, F., Yolke, R. (1995) Manual of Clinical Microbiology, 6th ed. ASM Press, Washington, DC.

    Google Scholar 

  • Nwiloh, B., Monago, C., Uwakwe, A. (2014) Chemical composition of essential oil from the fiddleheads of Pteridium aquilinum L. Kuhn found in Ogoni. J. Med. Plants Res. 8, 77–80.

    CAS  Google Scholar 

  • Pandey, A. K., Singh, P., Palni, U. T., Tripathi, N. N. (2012) In-vitro antibacterial activities of the essential oils of aromatic plants against Erwinia herbicola (Lohnis) and Pseu-domonas putida (Kris Hamilton). J. Serbian Chem. Soc. 77, 313–323.

    CAS  Google Scholar 

  • Panneerselvam, C., Murugan, K., Roni, M., Aziz, T., Suresh, U., Rajaganesh, R., Madhiyazhagan, P., Subramaniam, J., Dinesh, D., Nicoletti, M., Higuchi, A., Alarfaj, A. A., Munusamy, M. A., Kumar, S., Desneux, N., Benelli, G. (2015) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplas-modial activity. Parasitol. Res. 15, 997–1013.

    Google Scholar 

  • Park, S. N., Lim, Y. K., Freire, M. O., Cho, E., Jin, D., Kook, J. K. (2012) Antimicrobial effect of linalool and alpha-terpineol against periodontopathic and cariogenic bacteria. Anaerobe 18, 369–372.

    CAS  PubMed  Google Scholar 

  • Pattnaik, S., Subramanyam, V. R., Bapaji, M., Kole, C. R. (1997) Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 89, 39–46.

    CAS  PubMed  Google Scholar 

  • Pino, J. A., Marbot, R., Vazquez, C. (2004) Volatile components of tamarind (Tamarindus indica L.) grown in Cuba. J. Essent. Oil Res. 16, 318–320.

    CAS  Google Scholar 

  • Pino, J. A., Mesa, J., Mufioz, Y., Marti, M. P., Marbot, R. (2005) Volatile components from mango (Mangifera indica L.) culti- vars. J. Agric. Food Chem. 53, 2213–2223.

    CAS  PubMed  Google Scholar 

  • Quesada, J. M., Penyalver, R., Lopez, M. M. (2012) Epidemiology and control of plant diseases caused by phytopafhogenic bacteria: the case of olive knot disease caused by Pseudomonas savastanoi pv. savastanoi. Plant Pathol. 299–326.

    Google Scholar 

  • Reddy, D. N., Al-Rajab, A. J. (2016) Chemical composition, antibacterial and antifungal activities of Ruta graveolens L. volatile oils. Cogent Chem. 2, 1220055.

    Google Scholar 

  • Regnault-Roger, C., Philogene, B. J. R., Vincent, C. (2008) Biopesticides d’origine vegetale [Botanical Biopesticides]. 2eme ed. TEC and DOC Lavoisier, Paris.

    Google Scholar 

  • Rota, M. C., Herrera, A., Martinez, R. M., Sotomayor, J., Jordan, M. J. (2008) Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Cont. 19, 681–687.

    CAS  Google Scholar 

  • Sahayaraj, K., Borgio, J. S. F., Raju, G. (2009) Antifungal activity of three fern extracts on causative agents of groundnut early leaf spot and rust diseases. J. Plant Pro. Res. 49, 53–56.

    Google Scholar 

  • Sangwan, N. S., Farooqi, A. H. A., Shabih, F. (2001) Regulation of essential oil production in plants. Plant Growth Reg. 34, 3–21.

    CAS  Google Scholar 

  • Selvaraj, P., John De Britto, A., Sahayaraj, K. (2005) Phytoecdy-sone of Pteridium aquilinum (L) Kuhn (Dennstaedtiaceae) and its pesticidal property on two major pests. Phytopathol. Plant Prot. 38, 99–105.

    CAS  Google Scholar 

  • Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., Wolf, P. G. (2006) A classification for extant ferns. Taxon 55, 705–731.

    Google Scholar 

  • Tzakou, O., Vagias, C., Gani, A., Yannitsaros, A. (2004) Volatile constituents of essential oils isolated at different growth stages from three Conyza species growing in Greece. Flavour Fragr. J. 19, 425-428

    CAS  Google Scholar 

  • Ultee, A., Kets, E. P. W., Smid, E. J. (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 65, 4606–4610.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, Y., Qi, X., Liao, L., Xing, F., Ding, M., Wang, F., Zhang, X., Wu, Z., Serizawa, S., Prado, J., Funston, A., Gilbert, M., Nooteboom, H. (2013) Dennstaedtiaceae. Flora China 2–3, 147–168.

    Google Scholar 

  • Zarai, Z., Kadri, A., Ben Chobba, I., Ben Mansour, R., Bekir, A., Mejdoub, H., Gharsallah, N. (2011) The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis. 10, 161–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zengin, H., Baysal, A. (2014) Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 19, 17773–17798.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheimâa Bouchekouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchekouk, C., Kara, F.Z., Tail, G. et al. Essential oil composition and antibacterial activity of Pteridium aquilinum (L.) Kuhn. BIOLOGIA FUTURA 70, 56–61 (2019). https://doi.org/10.1556/019.70.2019.07

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/019.70.2019.07

Keywords

Navigation