Skip to main content
Log in

Maximum Principles and Applications for Fractional Differential Equations with Operators Involving Mittag-Leffler Function

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we formulate and prove two maximum principles to nonlinear fractional differential equations. We consider a fractional derivative operator with Mittag-Leffler function of two parameters in the kernel. These maximum principles are used to establish a pre-norm estimate of solutions, and to derive certain uniqueness and positivity results to related linear and nonlinear fractional initial value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Al-Refai, Y. Luchko, Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications. Fract. Calc. Appl. Anal. 17, No 2 (2014), 483–498 DOI: 10.2478/s13540-014-0181-5; https://www.degruyter.com/journal/key/FCA/17/2/html

    Article  MathSciNet  Google Scholar 

  2. M. Al-Refai, Yu. Luchko Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives. J. Appl. Math. and Computation. 257, (2015), 40–51.

    Article  MathSciNet  Google Scholar 

  3. M. Al-Refai, Yu. Luchko Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications. Analysis. 36, No 2 (2015) DOI: 10.1515/anly-2015-5011

    Google Scholar 

  4. M. Al-Refai, Maximum principles for nonlinear fractional differential equations in reliable space. Progress in Fract. Differentiation and Appl. 6, No 2 (2020), 95–99.

    Article  Google Scholar 

  5. R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications: Theory and Applications. Springer-Verlag, Berlin-Heidelberg, 2014; 2nd Ed. 2020.

    Book  Google Scholar 

  6. R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications: Theory and Applications Springer-Verlag, Berlin-Heidelberg (2014), 2nd Ed. 2020.

    Book  Google Scholar 

  7. A. Hanyga, A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 23, No 1 (2020), 211–223 DOI: 10.1515/fca-2020-0008; https://www.degruyter.com/journal/key/FCA/23/1/html.

    Article  MathSciNet  Google Scholar 

  8. A. Kilbas, M. Saigo, R. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. Funct. 15, No 1 (2004), 31–49.

    Article  MathSciNet  Google Scholar 

  9. A. Kilbas, H. Srivastava, T. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006).

    MATH  Google Scholar 

  10. V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. 69, (2008), 2677–2682.

    Article  MathSciNet  Google Scholar 

  11. Yu. Luchko Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, (2009), 218–223.

    Article  MathSciNet  Google Scholar 

  12. Yu Luchko General fractional integrals and derivatives with the So-nine kernels. Mathematics. 594, No 9 (2021), 1–17.

    Google Scholar 

  13. K.S. Miller, S. Samko, A note on the complete monotonocity of the generalized Mittag-Leffler function. Real Anal. Exchange. 23, No 2 (1998), 753–755.

    Article  Google Scholar 

  14. J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions. Appl. Math. Letters. 23, (2010), 1248–1251.

    Article  MathSciNet  Google Scholar 

  15. H. Pollard, The complete monotonic character of the Mittag-Leffler function Eα−x. Bull. Amer. Math. Soc. 54, (1948), 1115–1116.

    Article  MathSciNet  Google Scholar 

  16. T. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, (1971), 7–15.

    MathSciNet  MATH  Google Scholar 

  17. W.R. Schneider, Completely monotone generalized Mittag-Leffler functions. Expo. Math. 14, (1996), 3–16.

    MathSciNet  MATH  Google Scholar 

  18. H. Ye, F. Liu, V. Anh, I. Turner, Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations. Appl. Math. and Computation. 227, (2014), 531–540.

    Article  MathSciNet  Google Scholar 

  19. L. Zhenhai, Z. Shengda, B. Yunru, Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19, No 1 (2016), 188–211 DOI: 10.1515/fca-2016-0011; https://www.degruyter.com/journal/key/FCA/19/1/html.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Al-Refai.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Refai, M. Maximum Principles and Applications for Fractional Differential Equations with Operators Involving Mittag-Leffler Function. Fract Calc Appl Anal 24, 1220–1230 (2021). https://doi.org/10.1515/fca-2021-0052

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0052

MSC 2010

Key Words and Phrases

Navigation