Skip to main content
Log in

α-fractionally convex functions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this article, we introduce the concept of α-fractionally convex functions. We primarily focus on characterizing some of the qualitative properties of convex functions with the assistance of fractional order operators. Also, we discuss the connection of optimality, monotonicity, and convexity of a function in the sense of fractional calculus. Several examples are provided to support the proposed formulation, and one can establish the fractional convexity of a non-convex function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abdeljawad, B. Abdalla, Monotonicity results for delta and nabla Caputo and Riemann fractional differences via dual identities. Filomat 31, No 12 (2017), 3671–3683.

    Article  MathSciNet  Google Scholar 

  2. T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels. Advances in Difference Equations 2017 (2017), Art. 87.

  3. Z. Avazzadeh, B. Shafiee, and G.B. Loghmani, Fractional calculus of solving Abel’s integral equations using Chebyshev polynomials. Appl. Math. Sci. (Ruse) 5, No 45–48 (2011), 2207–2216.

    MathSciNet  MATH  Google Scholar 

  4. M.S. Bazaraa, H.D. Sherali, and C.M. Shetty, Nonlinear Programming: Theory and Algorithms. John Wiley & Sons (2005).

    MATH  Google Scholar 

  5. S.K. Choi, N. Koo, The monotonic property and stability of solutions of fractional differential equations. Nonlinear Analysis, Theory, Methods and Applications 74, No 17 (2011), 6530–6536.

    Article  MathSciNet  Google Scholar 

  6. R. Dahal, C.S. Goodrich, A monotonocity result for discrete fractional difference operators. Arch. Math. (Basel) 102 (2014), 293–299.

    Article  MathSciNet  Google Scholar 

  7. K. Diethelm, The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus. Fract. Calc. Appl. Anal. 15, No 2 (2012), 304–313; DOI: 10.2478/s13540-012-0022-3; https://www.degruyter.com/view/j/fca.2012.15.issue-2/issue-files/fca.2012.15.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  8. F. Du, B. Jia, L. Erbe, and A. Peterson, Monotonicity and convexity for nabla fractional (qh)-differences. J. Difference Equ. Appl. 22, No 9 (2016), 1224–1243.

    Article  MathSciNet  Google Scholar 

  9. L. Erbe, C.S. Goodrich, B. Jia, and A. Peterson, Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions. Adv. Difference Equ. 2016 (2016), Art. 43 31 pp.

  10. C.S. Goodrich, A convexity result for fractional differences. Appl. Math. Lett. 35 (2014), 58–62.

    Article  MathSciNet  Google Scholar 

  11. M. Huixia, S. Xin, Generalized s-convex functions on fractal sets. Abstr. Appl. Anal. 2014 (2014), Art. ID 254737. 8 pp.

  12. B. Jia, L. Erbe, and A. Peterson, Convexity for nabla and delta fractional differences. J. of Difference Equations and Appl. 21 (2015), 360–373.

    Article  MathSciNet  Google Scholar 

  13. B. Jia, L. Erbe, A. Peterson, Monotonicity and convexity for nabla fractional q-differences. Dynam. Systems Appl. 25, No 1–2 (2016), 47–60.

    MathSciNet  MATH  Google Scholar 

  14. A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006).

    MATH  Google Scholar 

  15. A.B. Malinowska, D.F.M. Torres, Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14, No 4 (2011), 523–537; DOI: 10.2478/s13540-011-0032-6; https://www.degruyter.com/view/j/fca.2011.14.issue-4/issue-files/fca.2011.14.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  16. I. Matychyn, V. Onyshchenko, Optimal control of linear systems with fractional derivatives. Fract. Calc. Appl. Anal. 21, No 1 (2018), 134–150; DOI: 10.1515/fca-2018-0009; https://www.degruyter.com/view/j/fca.2018.21.issue-1/issue-files/fca.2018.21.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  17. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York (1993).

    MATH  Google Scholar 

  18. J.D. Munkhammar, Fractional calculus and the Taylor-Riemann series. Undergrad. J. Math. 6, No 1 (2005), 1–19.

    Google Scholar 

  19. T. Odzijewicz, A.B. Malinowska, and D.F.M. Torres, Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl. 64, No 10 (2012), 3351–3366.

    Article  MathSciNet  Google Scholar 

  20. K. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York-London (1974).

    MATH  Google Scholar 

  21. T.J. Osler, Taylor’s series generalized for fractional derivatives and applications. SIAM J. Math. Anal. 2 (1971), 37–48.

    Article  MathSciNet  Google Scholar 

  22. G. Peng, L. Changpin, and C. Guanrong, On the fractional mean-value theorem. Intern. J. of Bifurcation and Chaos 22, No 5 (2012), Art. 1250104.

    Google Scholar 

  23. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  24. S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, (1993).

    MATH  Google Scholar 

  25. N. Singha, C. Nahak, A numerical scheme for generalized fractional optimal control problems. Appl. Appl. Math. 11, No 2 (2016), 798–814.

    MathSciNet  MATH  Google Scholar 

  26. N. Singha, C. Nahak, An efficient approximation technique for solving a class of fractional optimal control problems. J. Optim. Theory Appl. 174, No 3 (2017), 785–802.

    Article  MathSciNet  Google Scholar 

  27. A.W. Roberts, D.E. Varberg, Convex Functions. Academic Press, New York-London (1973).

    MATH  Google Scholar 

  28. X.F. Zhou, S. Liu, Z. Zhang, and W. Jiang, Monotonicity, concavity, and convexity of fractional derivative of functions. The Scientific World Journal 2013 (2013), Art. 605412.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Singha.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, N., Nahak, C. α-fractionally convex functions. Fract Calc Appl Anal 23, 534–552 (2020). https://doi.org/10.1515/fca-2020-0026

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0026

MSC 2010

Key Words and Phrases

Navigation