Skip to main content
Log in

High-order algorithms for riesz derivative and their applications (IV)

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The main goal of this article is to establish a new 4th-order numerical differential formula to approximate Riesz derivatives which is obtained by means of a newly established generating function. Then the derived formula is used to solve the Riesz space fractional advection-dispersion equation. Meanwhile, by the energy method, it is proved that the difference scheme is unconditionally stable and convergent with order 𝓞(τ2 + h4). Finally, several numerical examples are given to show that the numerical convergence orders of the numerical differential formulas and the finite difference scheme are in line with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280 (2015), 424–438.

    Article  MathSciNet  Google Scholar 

  2. S. Arshad, D. Baleanu, J. Huang, M. Qurashi, Y. Tang, Y. Zhao, Finite difference method for time-space fractional advection-diffusion equations with Riesz derivative. Entropy 20 (2018), 321.

    Article  MathSciNet  Google Scholar 

  3. D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res. 36, No 6 (2000), 1403–1412.

    Article  Google Scholar 

  4. M. Cai, C.P. Li, On Riesz derivative. Fract. Calc. Appl. Anal. 22, No 2 (2019), 287–301; DOI:10.1515/fca-2019-0019;; https://www.degruyter.com/view/j/fca.2019.22.issue-2/issue-files/fca.2019.22.issue-2.xml

    Article  MathSciNet  Google Scholar 

  5. M. Cai, C.P. Li, Regularity of the solution to Riesz-type fractional differential equation. Integral Transform. Spec. Funct. 30, No 9 (2019), 711–742.

    Article  MathSciNet  Google Scholar 

  6. J. Cao, G. Song, J. Wang, Q. Shi, S. Sun, Blow-up and global solutions for a class of time fractional nonlinear reaction-diffusion equation with weakly spatial source. Appl. Math. Lett. 91 (2019), 201–206.

    Article  MathSciNet  Google Scholar 

  7. F. Chen, D. Baleanu, G.C. Wu, Existence results of fractional differential equations with Riesz-Caputo derivative. The European Phys. J. Special Topics 226, No 16-18 (2017), 3411–3425.

    Article  Google Scholar 

  8. H.F. Ding, C.P. Li, Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (I). Abstr. Appl. Anal. 2014 (2014), Art. ID 653797, 17 pp

  9. H.F. Ding, C.P. Li, Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293 (2015), 218–237.

    Article  MathSciNet  Google Scholar 

  10. H.F. Ding, C.P. Li, High-order algorithms for Riesz derivaive and their applications (III). Fract. Calc. Appl. Anal. 19, No 1 (2016), 19–55; DOI:10.1515/fca-2016-0003; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml

    Article  MathSciNet  Google Scholar 

  11. H.F. Ding, C.P. Li, Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations. Fract. Calc. Appl. Anal. 20, No 3 (2017), 722–764; DOI:10.1515/fca-2017-0038; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml

    Article  MathSciNet  Google Scholar 

  12. R. Hilfer, Applications of Fractional Calculus in Physics World Science Press, Singapore (2000)

    Book  Google Scholar 

  13. B. Jin, B. Li, Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, No 6 (2017), A3129–A3152.

    Article  MathSciNet  Google Scholar 

  14. R. Lazarov, P. Vabishchevich, A numerical study of the homogeneous elliptic equation with fractional boundary conditions. Fract. Calc. Appl. Anal. 20, No 2 (2017), 337–351; DOI:10.1515/fca-2017-0018; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml

    Article  MathSciNet  Google Scholar 

  15. C.P. Li, A. Chen, Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95, No 6-7 (2018), 1048–1099.

    Article  MathSciNet  Google Scholar 

  16. C.P. Li, Q. Yi, Modeling and computing of fractional convection equation. Commun. Appl. Math. Comput. 1, No 4 (2019), 565–595.

    Article  MathSciNet  Google Scholar 

  17. C.P. Li, Q. Yi, J. Kurths, Fractional convection. J. Comput. Nonlinear Dynam. 13, No 1 (2018), Art. # 011004

    Google Scholar 

  18. C.P. Li, F.H. Zeng, Numerical Methods for Fractional Calculus Chapman and Hall/CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  19. C.P. Li, Z.G. Zhao, Introduction to fractional integrability and differentiability. Eur. Phys. J.-Spec. Top. 193, No 1 (2011), 5–26.

    Article  Google Scholar 

  20. Z.Q. Li, Y.B. Yan, Error estimates of high-order numerical methods for solving time fractional partial differential equations,. Fract. Calc. Appl. Anal. 21, No 3 (2018), 746–774; DOI:10.1515/fca-2018-0039; https://www.degruyter.com/view/j/fca.2018.21.issue-3/issue-files/fca.2018.21.issue-3.xml

    Article  MathSciNet  Google Scholar 

  21. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77.

    Article  MathSciNet  Google Scholar 

  22. F.L. Nave, B. Mazur, Reading Bombelli. Math. Intell. 24, No 1 (2002), 12–21.

    Article  MathSciNet  Google Scholar 

  23. R.W.D. Nickalls, A new approach to solving the cubic: Cardano’s solution revealed. Math. Gaz. 77, No 480 (1993), 354–359.

    Article  Google Scholar 

  24. R.W.D. Nickalls, Viete, Descartes and the cubic equation. Math. Gaz. 90, No 518 (2006), 203–208.

    Article  Google Scholar 

  25. I. Podlubny, Fractional Differential Equations Acad. Press, N. York (1999)

    MATH  Google Scholar 

  26. L.B. Rall, Automatic Differentiation: Techniques and Applications Springer Verlag, Berlin-Heidelberg-New York (1981)

    Book  Google Scholar 

  27. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications Gordon and Breach Sci. Publ., Amsterdam (1993)

    MATH  Google Scholar 

  28. W.Y. Tian, H. Zhou, W.H. Deng, A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84 (2015), 1703–1727.

    Article  MathSciNet  Google Scholar 

  29. V.K. Tuan, R. Gorenflo, Extrapolation to the limit for numerical fractional differentiation. Z. Agnew. Math. Mech. 75 (1995), 646–648.

    Article  MathSciNet  Google Scholar 

  30. Z. Wang, S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277 (2014), 1–15.

    Article  MathSciNet  Google Scholar 

  31. W.S. Zhang, Finite Difference Methods for Partial Differential Equations in Science Computation Higher Education Press, Beijin (2006)

    Google Scholar 

  32. Y. Zhang, X. Yu, X. Li, J.F. Kelly, H.G. Sun, C.M. Zheng, Impact of absorbing and reflective boundaries on fractional derivative models: Quantification, evaluation and application. Adv. Water Resour. 128 (2019), 129–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengfei Ding.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Li, C. High-order algorithms for riesz derivative and their applications (IV). FCAA 22, 1537–1560 (2019). https://doi.org/10.1515/fca-2019-0080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0080

MSC 2010

Key Words and Phrases

Navigation