Skip to main content
Log in

Inverse Problems for a Class of Degenerate Evolution Equations with Riemann - Liouville Derivative

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Unique solvability and well-posedness issues are studied for linear inverse problems with a constant unknown parameter to fractional order differential equations with Riemann - Liouvlle derivative in Banach spaces. Firstly, well-posedness criteria for the inverse problem with the Cauchy type initial conditions to the differential equation in a Banach space that solved with respect to the fractional derivative is obtained. This result is applied to search of sufficient conditions for the unique solution existence of the inverse problem for equation with linear degenerate operator at the Riemann - Liouville fractional derivative. It is shown that the presence of the matching conditions for the data of the problem excludes the possibility of the well-posedness consideration for the degenerate inverse problem with the Cauchy type condition. But for the inverse problem with the Showalter - Sidorov type conditions it is found the criteria of the well-posedness. Abstract results are used to the search of conditions of the unique solvability for an inverse problem to a class of partial differential equations of time-fractional order with polynomials of elliptic differential operators with respect to the spatial variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.L. Abasheeva, Determination of a right-hand side term in an operator-differential equation of mixed type. J. of Inverse and Ill-Posed Problems 10, No 6 (2003), 547–560.

    MathSciNet  MATH  Google Scholar 

  2. M. Al Horani, A. Favini, Degenerate first-order inverse problems in Banach spaces. Nonlinear Analysis 75, No 1 (2012), 68–77.

    Article  MathSciNet  Google Scholar 

  3. N. Dunford, J.T. Schwartz, Linear Operators. Part I. General Theory. John Wiley & Sons, Inc., Hoboken, New Jersey, 1988.

    MATH  Google Scholar 

  4. M.V. Falaleev, Abstract problem of the prediction-control with degeneration in Banach spaces. Izvestiya Irkutskogo gosuderstvennogo universiteta. Seriya Matematika 3 (2010), 126–132 (In Russian).

    MATH  Google Scholar 

  5. A. Favini, A. Lorenzi, Differential Equations. Inverse and Direct Problems. Taylor and Francis Group, LLC (2006).

    Book  Google Scholar 

  6. A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces. Marcel Dekker Inc., New York (1999).

    MATH  Google Scholar 

  7. V.E. Fedorov, Strongly holomorphic groups of linear equations of Sobolev type in locally convex spaces. Differential Equations 40, No 5 (2004), 753–765.

    Article  MathSciNet  Google Scholar 

  8. V.E. Fedorov, D.M. Gordievskikh, M.V. Plekhanova, Equations in Banach spaces with a degenerate operator under a fractional derivative. Differential Equations 51, No 10 (2015), 1360–1368.

    Article  MathSciNet  Google Scholar 

  9. V.E. Fedorov, N.D. Ivanova, Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete and Continuous Dynamical Systems. Series S. 9, No 3 (2016), 687–696.

    Article  MathSciNet  Google Scholar 

  10. V.E. Fedorov, N.D. Ivanova, Identification problem for degenerate evolution equations of fractional order. Fract. Calc. Appl. Anal. 20, No 3 (2017), 706–721; DOI: 10.1515/fca-2017-0037; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  11. V.E. Fedorov, R.R. Nazhimov, D.M. Gordievskikh, Initial value problem for a class of fractional order inhomogeneous equations in Banach spaces. AIP Conf. Proc. 1759 (2016), 020008-1–020008-4.

  12. V.E. Fedorov, M.V. Plekhanova, R.R. Nazhimov, Degenerate linear evolution equations with the Riemann–Liouville fractional derivative. Siberian Math. J. 59, No 1 (2018), 136–146.

    Article  Google Scholar 

  13. V.E. Fedorov, A.V. Urazaeva, An inverse problem for linear Sobolev type equations. J. of Inverse and Ill-Posed Problems 12, No 4 (2004), 387–395.

    Article  MathSciNet  Google Scholar 

  14. A.V. Glushak, On an inverse problem for an abstract differential equation of fractional order. Mathematical Notes 87, No 5–6 (2010), 654–662.

    Article  Google Scholar 

  15. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Sci. Publ., Amsterdam-Boston-Heidelberg (2006).

    MATH  Google Scholar 

  16. V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York (1994).

    MATH  Google Scholar 

  17. A.I. Kozhanov, Composite Type Equations and Inverse Problems. VSP, Utrecht (1999).

    Book  Google Scholar 

  18. Y. Liu, W. Rundell, M. Yamamoto, Strong maximum principle for fractional diffusion equations and an application to an inverse source rpoblem. Fract. Calc. Appl. Anal. 19, No 4 (2016), 888–906; DOI: 10.1515/fca-2016-0048; https://www.degruyter.com/view/j/fca.2016.19.issue-4/issue-files/fca.2016.19.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  19. D.G. Orlovsky, Parameter determination in a differential equation of fractional order with Riemann–Liouville fractional derivative in a Hilbert space. J. of Siberian Federal University. Mathematics & Physics 8, No 1 (2015), 55–63.

    Article  MathSciNet  Google Scholar 

  20. L. Plociniczak, Diffusitivity identification in a nonlinear time-fractional diffusion equation. Fract. Calc. Appl. Anal. 19, No 4 (2016), 843–866; DOI: 10.1515/fca-2016-0046; https://www.degruyter.com/view/j/fca.2016.19.issue-4/issue-files/fca.2016.19.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  21. A.I. Prilepko, D.G. Orlovskii, I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics. Marcel Dekker Inc., New York, Basel (2000).

    Google Scholar 

  22. S.G. Pyatkov, M.L. Samkov, On some classes of coefficient inverse problems for parabolic systems of equations. Siberian Advances in Mathematics 22, No 4 (2012), 287–302.

    Article  MathSciNet  Google Scholar 

  23. G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators. VSP, Utrecht, Boston (2003).

    Book  Google Scholar 

  24. I.V. Tikhonov, Yu.S. Eidelman, Problems on correctness of ordinary and inverse problems for evolutionary equations of a special form. Mathematical Notes 56, No 2 (1994), 830–839.

    Article  MathSciNet  Google Scholar 

  25. I.V. Tikhonov, Yu.S. Eidelman, An inverse problem for a differential equation in a Banach space and the distribution of zeros of an entire Mittag-Leffler function. Differential Equations 38, No 5 (2002), 669–677.

    Article  MathSciNet  Google Scholar 

  26. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher Verlag der Wissenschaften, Berlin (1978).

    MATH  Google Scholar 

  27. A.V. Urazaeva, V.E. Fedorov, Prediction-control problem for some systems of equations of fluid dynamics. Differential Equations 44, No 8 (2008), 1147–1156.

    Article  MathSciNet  Google Scholar 

  28. A.V. Urazaeva, V.E. Fedorov, On the well-psedness of the prediction-control problem for certain systems of equations. Mathematical Notes 25, No 3–4 (2009), 426–436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir E. Fedorov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, V.E., Nazhimov, R.R. Inverse Problems for a Class of Degenerate Evolution Equations with Riemann - Liouville Derivative. FCAA 22, 271–286 (2019). https://doi.org/10.1515/fca-2019-0018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0018

MSC 2010

Key Words and Phrases

Navigation