Skip to main content
Log in

Centre-of-Mass Like Superposition of Ornstein–Uhlenbeck Processes: A Pathway to Non-Autonomous Stochastic Differential Equations and to Fractional Diffusion

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We consider an ensemble of Ornstein–Uhlenbeck processes featuring a population of relaxation times and a population of noise amplitudes that characterize the heterogeneity of the ensemble. We show that the centre-of-mass like variable corresponding to this ensemble is statistically equivalent to a process driven by a non-autonomous stochastic differential equation with time-dependent drift and a white noise. In particular, the time scaling and the density function of such variable are driven by the population of timescales and of noise amplitudes, respectively. Moreover, we show that this variable is equivalent in distribution to a randomly-scaled Gaussian process, i.e., a process built by the product of a Gaussian process times a non-negative independent random variable. This last result establishes a connection with the so-called generalized grey Brownian motion and suggests application to model fractional anomalous diffusion in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.E. Barndorff–Nielsen, N.N. Leonenko, Spectral properties of superpositions of Ornstein–Uhlenbeck type processes. Methodol. Comput. Appl. Probab. 7 (2005), 335–352.

    Article  MathSciNet  Google Scholar 

  2. F.E. Benth, B. Rüdiger, A. Süss, Ornstein–Uhlenbeck processes in Hilbert space with non-Gaussian stochastic volatility. Stoch. Process. Appl. 128 (2018), 461–486.

    Article  MathSciNet  Google Scholar 

  3. J.P.N. Bishwal, Minimum contrast estimation in fractional Ornstein–Uhlenbeck process: Continuous and discrete sampling. Fract. Calc. Appl. Anal. 14, No. 3 (2011), 375–410; DOI: 10.2478/s13540-011-0024-6https://www.degruyter.com/view/j/fca.2011.14.issue-3/issue-files/fca.2011.14.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  4. M. Csörgő, Z.Y. Lin, On moduli of continuity for Gaussian and l2-norm squared processes generated by Ornstein–Uhlenbeck processes. Canad. J. Math. 42 (1990), 141–158.

    Article  MathSciNet  Google Scholar 

  5. O. Garet, Asymptotic behaviour of Gaussian processes with integral representation. Stoch. Process. Appl. 89 (2000), 287–303.

    Article  MathSciNet  Google Scholar 

  6. S. Gheorghiu, M.-O. Coppens, Heterogeneity explains features of “anomalous” thermodynamics and statistics. Proc. Natl. Acad. Sci. USA 101 (2004), 15852–15856.

    Article  Google Scholar 

  7. D. Grahovac, N.N. Leonenko, A. Sikorskii, I. Tešnjak, Intermittency of superpositions of Ornstein–Uhlenbeck type processes. J. Stat. Phys. 165 (2016), 390–408.

    Article  MathSciNet  Google Scholar 

  8. M. Grothaus, F. Jahnert, F. Riemann, J.L. da Silva, Mittag–Leffler analysis I: Construction and characterization. J. Funct. Anal. 268 (2015), 1876–1903.

    Article  MathSciNet  Google Scholar 

  9. M. Grothaus, F. Jahnert, Mittag–Leffler analysis II: Application to the fractional heat equation. J. Funct. Anal. 270 (2016), 2732–2768.

    Article  MathSciNet  Google Scholar 

  10. F. Höfling, T. Franosch, Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 76 (2013), 046602.

    Article  MathSciNet  Google Scholar 

  11. J. Klafter, S.-C. Lim, R. Metzler, Fractional Dynamics: Recent Advances World Scientific, Singapore (2011).

    Book  Google Scholar 

  12. R. Klages, G. Radons, I.M. Sokolov, Anomalous Transport: Foundations and Applications Wiley–VCH, Weinheim (2008).

    Book  Google Scholar 

  13. N. Leonenko, E. Taufer, Convergence of integrated superpositions of Ornstein–Uhlenbeck processes to fractional Brownian motion. Stochastics 77, No. 6 (2005), 477–499.

    Article  MathSciNet  Google Scholar 

  14. Z.Y. Lin, On large increments of infinite series of Ornstein–Uhlenbeck processes. Stoch. Process. Appl. 60 (1995), 161–169.

    Article  MathSciNet  Google Scholar 

  15. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No. 2 (2001), 153–192.

    MathSciNet  MATH  Google Scholar 

  16. F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in time-fractional diffusion processes: A tutorial survey. Int. J. Differ. Equations 2010 (2010), 104505.

    MathSciNet  MATH  Google Scholar 

  17. R. Mayor, S. Etienne-Manneville, The front and rear of collective cell migration. Nat. Rev. Mol. Cell Biol. 17 (2016), 97–109.

    Article  Google Scholar 

  18. Y. Meroz, I.M. Sokolov, A toolbox for determining subdiffusive mechanisms. Phys. Rep. 573 (2015), 1–29.

    Article  MathSciNet  Google Scholar 

  19. R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recent developments in fractional dynamics descriptions of anomalous dynamical processes. J. Phys. A: Math. Theor. 37, No. 31 (2004), R161–R208.

    Article  Google Scholar 

  20. D. Molina-García, T. Minh Pham, P. Paradisi, C. Manzo, G. Pagnini, Fractional kinetics emerging from ergodicity breaking in random media. Phys. Rev. E 94 (2016), 052147.

    Article  Google Scholar 

  21. A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis Lambert Academic Publishing (2011). Ph.D. Thesis, Physics Department, University of Bologna (2008).

    Google Scholar 

  22. A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integr. Transf. Spec. Funct. 20, No. 3–4 (2009), 185–198.

    Article  MathSciNet  Google Scholar 

  23. A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor. 41 (2008), 285003.

    Article  MathSciNet  Google Scholar 

  24. G. Pagnini, Erdélyi–Kober fractional diffusion. Fract. Calc. Appl. Anal. 15, No. 1 (2012), 117–127; DOI: 10.2478/s13540-012-0008-1https://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  25. G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal. 16, No. 2 (2013), 436–453; DOI: 10.2478/s13540-013-0027-6https://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  26. G. Pagnini, Short note on the emergence of fractional kinetics. Physica A 409 (2014), 29–34.

    Article  MathSciNet  Google Scholar 

  27. G. Pagnini, P. Paradisi, A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 19, No. 2 (2016), 408–440; DOI: 10.1515/fca-2016-0022https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  28. B.M. Regner, D. Vučinić, C. Domnisoru, T.M. Bartol, M.W. Hetzer, D.M. Tartakovsky, T.J. Sejnowski, Anomalous diffusion of single particles in cytoplasm. Biophys. J. 104 (2013), 1652–1660.

    Article  Google Scholar 

  29. V. Sposini, A.V. Chechkin, F. Seno, G. Pagnini, R. Metzler, Random diffusivity from stochastic equations: comparison of two models for Brownian yet non-Gaussian diffusion. New J. Phys. 20 (2018), Art. # 043044.

  30. S. Vitali, V. Sposini, O. Sliusarenko, P. Paradisi, G. Castellani, G. Pagnini, Langevin equation in complex media and anomalous diffusion. J. R. Soc. Interface 15 (2018), 20180282.

    Article  Google Scholar 

  31. C. Zeng, Y.-Q. Chen, Q. Yang, The fBm-driven Ornstein–Uhlenbeck process: Probability density function and anomalous diffusion. Fract. Calc. Appl. Anal. 15, No. 3 (2012), 479–492; DOI: 10.2478/s13540-012-0034-zhttps://www.degruyter.com/view/j/fca.2012.15.issue-3/issue-files/fca.2012.15.issue-3.xml.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pagnini Gianni.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ovidio, M., Vitali, S., Sposini, V. et al. Centre-of-Mass Like Superposition of Ornstein–Uhlenbeck Processes: A Pathway to Non-Autonomous Stochastic Differential Equations and to Fractional Diffusion. FCAA 21, 1420–1435 (2018). https://doi.org/10.1515/fca-2018-0074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0074

MSC 2010

Key Words and Phrases

Navigation