Skip to main content
Log in

Asymptotically Periodic Solutions for Caputo Type Fractional Evolution Equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we prove that Caputo type linear fractional evolution equations do not have nonconstant periodic solutions. Then, we study asymptotically periodic solutions of semilinear fractional evolution equations and establish existence and uniqueness results by using theory of semigroup and fixed point theorems. Finally, two examples are given to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Agarwal, S. Hristova, D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Fract. Calc. Appl. Anal. 19, No. 2 (2016), 290–318; DOI: 10.1515/fca-2016-0017https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  2. E. Bajlekova, Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Eindhoven University of Technology, (2001).

    MATH  Google Scholar 

  3. T.A. Burton, B. Zhang, Asymptotically periodic solutions of fractional differential equations. Dyn. Contin. Discrete Impuls. Syst., Ser. A 20 (2013), 1–21.

    MathSciNet  MATH  Google Scholar 

  4. C. Cuevas, H.R. Henríquez, H. Soto, Asymptotically periodic solutions of fractional differential equations. Appl. Math. Comput. 236 (2014), 524–545.

    MathSciNet  MATH  Google Scholar 

  5. C. Cuevas, M. Pierri, A. Sepulveda, WeightedS-asymptotically ω-periodic solutions of a class of fractional differential equations. Adv. Difference Equ. 2011 (2011), Art. ID 584874, 1–13.

    Article  MathSciNet  Google Scholar 

  6. C. Cuevas, J. Souza, S-asymptotically ω-periodic solutions of semilinear fractional integro-differential equations. Appl. Math. Lett. 22 (2009), 865–870.

    Article  MathSciNet  Google Scholar 

  7. C. Cuevas, J. Souza, Existence of S-asymptotically ω-periodic solutions for fractional order functional integro-differential equations with infinite delay. Nonlinear Anal.:TMA 72 (2010), 1683–1689.

    Article  MathSciNet  Google Scholar 

  8. K. Diethelm, The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, Springer, New York (2010).

    Google Scholar 

  9. M. Fečkan, J. Wang, M. Pospíčil, [tiFractional-Order Equations and Inclusions.} De Gruyter (2017).

  10. H. Henríquez, M. Pierri, P. Táboas, On S-asymptotically ω-periodic functions on Banach spaces and applications. J. Math. Anal. Appl. 343 (2008), 1119–1130.

    Article  MathSciNet  Google Scholar 

  11. T. Ke, N. Loi, V. Obukhovskii, Decay solutions for a class of reactional differential variational inequalities. Fract. Calc. Appl. Anal. 18, No. 3 (2015), 531–553; DOI: 10.1515/fca-2015-0033https://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  12. A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science BV (2006).

    MATH  Google Scholar 

  13. J. Mu, Y. Zhou, L. Peng, Periodic solutions and asymptotically periodic solutions to fractional evolution equations. Discrete Dyn. Nature Society 2017 (2017), Art. ID 1364532, 1–12.

    Article  MathSciNet  Google Scholar 

  14. A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York (1983).

    Book  Google Scholar 

  15. M. Pierri, On S-asymptotically ω-periodic functions and applications. Nonlinear Anal. 75 (2012), 651–661.

    Article  MathSciNet  Google Scholar 

  16. A.E. Taylor, D.C. Lay, Introduction to Functional Analysis, 2nd Edn. John Willey & Sons, New York (1980).

    MATH  Google Scholar 

  17. J. Wang, M. Fečkan, Y. Zhou, Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 18 (2013), 246–256.

    Article  MathSciNet  Google Scholar 

  18. J. Wang, M. Fečkan, Y. Zhou, A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, No. 4 (2016), 806–831; DOI: 10.1515/fca-2016-0044https://www.degruyter.com/view/j/fca.2016.19.issue-4/issue-files/fca.2016.19.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  19. H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 (2007), 1075–1081.

    Article  MathSciNet  Google Scholar 

  20. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comp. Math. Appl. 59 (2010), 1063–1077.

    Article  MathSciNet  Google Scholar 

  21. Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations. Nonl. Anal. Real World Appl. 11 (2010), 4465–4475.

    Article  MathSciNet  Google Scholar 

  22. Y. Zhou, J. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, 2nd Edn. World Scientifc, Singapore (2016).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lulu Ren.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Wang, J. & Fečkan, M. Asymptotically Periodic Solutions for Caputo Type Fractional Evolution Equations. FCAA 21, 1294–1312 (2018). https://doi.org/10.1515/fca-2018-0068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0068

MSC 2010

Key Words and Phrases

Navigation