Skip to main content
Log in

WEll-Posedness of General Caputo-Type Fractional Differential Equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In the present paper, initial value problems of fractional differential equations are considered. The fractional derivatives are defined as the general Caputo-type fractional derivatives proposed by Anatoly Kochubei. By using the Schauder fixed point theorem, the local existence, the global existence and the uniqueness of solutions are obtained under appropriate conditions. In addition, it is proved that the solution depends on the parameters of the equation in a continuous way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed order fractional diffusion equations. Phys. Rev. E 66 (2002), 1–7.

    Article  Google Scholar 

  2. V. Daftardar-Gejji, S. Bhalekar, Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 345 (2008), 754–765.

    Article  MathSciNet  Google Scholar 

  3. K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin (2010).

    Book  Google Scholar 

  4. K. Diethelm, N.J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002), 229–248.

    Article  MathSciNet  Google Scholar 

  5. K. Diethelm, The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus. Fract. Calc. Appl. Anal. 15, No 2 (2012), 304–313; 10.2478/s13540-012-0022-3; https://www.degruyter.com/view/j/fca.2012.15.issue-2/issue-files/fca.2012.15.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  6. R.A.C. Ferreria, A uniqueness result for a fractional differential equation. Fract. Calc. Appl. Anal. 15, No 4 (2012), 611–615; 10.2478/s13540-012-0042-z; https://www.degruyter.com/view/j/fca.2012.15.issue-4/issue-files/fca.2012.15.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  7. R. Gorenflo, Y. Luchko, M. Yamamoto, Time fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18, No 3 (2015), 799–820; 10.1515/fca-2015-0048; https://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  8. A.N. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integr. Equa. Operator Theory 71 (2011), 583–600.

    Article  MathSciNet  Google Scholar 

  9. A.N. Kochubei, Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340 (2008), 252–281.

    Article  MathSciNet  Google Scholar 

  10. V. Lakshmikantham, S. Leela, Nagumo-type uniqueness result for fractional differential equations. Nonlinear Anal., Theory Methods Appl. 71 (2009), 2886–2889.

    Article  MathSciNet  Google Scholar 

  11. V. Lakshmikantham, S. Leela, A Krasnoselskii-Krein-type uniqueness result for fractional differential equations. Nonlinear Anal., Theory Methods Appl. 71 (2009), 3421–3424.

    Article  MathSciNet  Google Scholar 

  12. Z. Li, Y. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 257 (2015), 381–397.

    MathSciNet  MATH  Google Scholar 

  13. Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351 (2009), 218–223.

    Article  MathSciNet  Google Scholar 

  14. Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538–548.

    Article  MathSciNet  Google Scholar 

  15. Y. Luchko, M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 19, No 3 (2016), 675–695; 10.1515/fca-2016-0036; https://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  16. Y. Luchko, M. Yamamoto, On the maximum principle for a time-fractional diffusion equation. Fract. Calc. Appl. Anal. 20, No 5 (2017), 1131–1145; 10.1515/fca-2017-0060; https://www.degruyter.com/view/j/fca.2017.20.issue-5/issue-files/fca.2017.20.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  17. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010).

    Book  Google Scholar 

  18. Y.A. Rossikhin, M.V. Shitikova, Comparative analysis of viscoelastic models involving fractioinal derivatives of different orders. Fract. Calc. Appl. Anal. 10, No 2 (2007), 111–121; http://www.math.bas.bg/complan/fcaa.

    MathSciNet  MATH  Google Scholar 

  19. T. Sandev, R. Metzler, A. Chechkin, From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 21, No 1 (2018), 10–28; 10.1515/fca-2018-0002; https://www.degruyter.com/view/j/fca.2018.21.issue-1/issue-files/fca.2018.21.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  20. R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions. Theory and Applications. De Gruyter, Berlin (2012).

    Book  Google Scholar 

  21. C. Sin, L. Zheng, Existence and uniqueness of global solutions of Captuo-type fractional differential equations. Fract. Calc. Appl. Anal. 19, No 3 (2016), 765–774; 10.1515/fca-2016-0040.

    Article  MathSciNet  Google Scholar 

  22. A. Suzuki, Y. Niibori, S.A. Fomin, V.A. Chugunov, T. Hashida, Prediction of reinejction effects in fault-related subsidiary structures by using fractional derivative-based mathematical models for sustainable design of geothermal reservoirs. Geothermics 57 (2015), 196–204.

    Article  Google Scholar 

  23. V.V. Uchaikin, Fractional Derivatives for Physicists and Engineers. Springer, Berlin (2013).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Sik Sin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sin, CS. WEll-Posedness of General Caputo-Type Fractional Differential Equations. FCAA 21, 819–832 (2018). https://doi.org/10.1515/fca-2018-0043

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0043

MSC 2010

Key Words and Phrases

Navigation