Skip to main content
Log in

Analytic Approximate Solutions for a Class of Variable Order Fractional Differential Equations Using The Polynomial Least Squares Method

  • Shopt Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper a new way to compute analytic approximate polynomial solutions for a class of nonlinear variable order fractional differential equations is proposed, based on the Polynomial Least Squares Method (PLSM). In order to emphasize the accuracy and the efficiency of the method several examples are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Atanackovic, S. Pilipovic, Hamilton’s principle with variable order fractional derivatives. Fract. Calc. Appl. Anal. 14, No 1 (2011), 94–109; 10.2478/s13540-011-0007-7; https://www.degruyter.com/view/j/fca.2011.14.issue-1/issue-files/fca.2011.14.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  2. W. Chen, J.J. Zhang, J.Y. Zhang, A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract. Calc. Appl. Anal. 16, No 1 (2013), 76–92; 10.2478/s13540-013-0006-y; https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  3. Y.M. Chen, Y.Q. Wei, D.Y. Liu, H. Yu, Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets. Appl. Math. Lett. 46 (2015), 83–88; 10.1016/j.aml.2015.02.010.

    Article  MathSciNet  Google Scholar 

  4. G.R.J. Cooper, D.R. Cowan, Filtering using variable order vertical derivatives. Comput. Geosci. 30 (2004), 455–459; 10.1016/j.cageo.2004.03.001.

    Article  Google Scholar 

  5. F. Geng, M. Cui, A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl. Math. Lett. 25 (2012), 818–823; 10.1016/j.aml.2011.10.025.

    Article  MathSciNet  Google Scholar 

  6. A.A. Kilbas, S. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differ. Equ. 1141 (2005), 84–89; 10.1007/s10625-005-0137-y.

    Article  MathSciNet  Google Scholar 

  7. V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. TMA 69 (2008), 2677–2683; 10.1016/j.na.2007.08.042.

    Article  MathSciNet  Google Scholar 

  8. X. Li, B. Wu, Approximate analytical solutions of nonlocal fractional boundary value problems. Appl. Math. Model. 39 (2015), 1717–1724; /10.1016/j.apm.2014.09.035.

    Article  MathSciNet  Google Scholar 

  9. X. Li, B. Wu, A numerical technique for variable fractional functional boundary value problems. Appl. Math. Lett. 43 (2015), 108–113; 10.1016/j.aml.2014.12.012.

    Article  MathSciNet  Google Scholar 

  10. Z. Liu, S. Zeng, Y. Bai, Maximum principles for multi-term space-time variable-order fractional sub-diffusion in concrete structures. Fract. Calc. Appl. Anal. 19, No 1 (2016), 188–211; 10.1515/fca-2016-0011; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  11. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

  12. H.G. Sun, Y. Zhang, W. Chen, D.M. Reeves, Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157 (2014), 47–58; 0.1016/j.jconhyd.2013.11.002.

    Article  Google Scholar 

  13. N.H. Sweilam, M.M. Khader, H.M. Almarwm, Numerical studies for the variable-order nonlinear fractional wave equation. Fract. Calc. Appl. Anal. 15, No 4 (2012), 669–683; 10.2478/s13540-012-0045-9; https://www.degruyter.com/view/j/fca.2012.15.issue-4/issue-files/fca.2012.15.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  14. D.B.H. Tay, S.S. Abesekera, A.P. Balasuriya, Audio signal processing via harmonic separation using variable Laguerre filters. In: Proc. of the Internat. Symp. on Circuits and Systems (2003), 558–561.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Bota.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bota, C., Căruntu, B. Analytic Approximate Solutions for a Class of Variable Order Fractional Differential Equations Using The Polynomial Least Squares Method. FCAA 20, 1043–1050 (2017). https://doi.org/10.1515/fca-2017-0054

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0054

MSC 2010

Key Words and Phrases

Navigation