Skip to main content
Log in

Geometric Interpretation of Fractional-Order Derivative

  • Discussion Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

A new geometric interpretation of the Riemann-Liouville and Caputo derivatives of non-integer orders is proposed. The suggested geometric interpretation of the fractional derivatives is based on modern differential geometry and the geometry of jet bundles. We formulate a geometric interpretation of the fractional-order derivatives by using the concept of the infinite jets of functions. For this interpretation, we use a representation of the fractional-order derivatives by infinite series with integer-order derivatives. We demonstrate that the derivatives of non-integer orders connected with infinite jets of special type. The suggested infinite jets are considered as a reconstruction from standard jets with respect to order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Dif- ferentiable Maps. Volume 1. Birkhäuser, Boston, (2012).

    Google Scholar 

  2. F. Ben Adda, Geometric interpretation of the differentiability and gradient of real order. Comptes Rendus de l’Academie des Sciences - Series I - Mathematiques 326, No 8 (1997), 931–934. [in French].

    MATH  Google Scholar 

  3. F. Ben Adda, Geometric interpretation of the fractional derivative. Journal of Fractional Calculus 11 (1997), 21–51.

    MathSciNet  MATH  Google Scholar 

  4. F. Ben Adda, The differentiability in the fractional calculus. Nonlinear Analysis 47 (2001), 5423–5428.

    MathSciNet  MATH  Google Scholar 

  5. A.G. Butkovskii, S.S. Postnov, E.A. Postnova, Fractional integro-differential calculus and its control-theoretical applications, I. Mathematical fundamentals and the problem of interpretation. Automation and Remote Control 74, No 4 (2013), 543–l574.

    MathSciNet  MATH  Google Scholar 

  6. V.N. Chetverikov, A.B. Bocharov, S.V. Duzhin, N.G. Khor’kova, I.S. Krasil’shchik, A.V. Samokhin, Y.N. Torkhov, A.M. Verbovetsky, A.M. Vinogradov, Symmetries and Conservation Laws for Differential Equations of Mathematical Physics Amer. Math. Soc., Providence, (1999), 333 p.

    MATH  Google Scholar 

  7. R. Cioc, Physical and geometrical interpretation of Grünwald-Letnikov differintegrals: Measurement of path and acceleration. Fract. Calc. Appl. Anal 19, No 1 (2016), 161–172. 10.1515/fca-2016-0009 https://www.degruyter.com/view7j /fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  8. G. Giachetta, L. Mangiarotti, G. Sardanashvily, Advanced Classical Field Theory. World Scientific, Singapore, (2009).

    MATH  Google Scholar 

  9. R. Gorenflo, Afterthoughts on interpretation of fractional derivatives and integrals. In: P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods and Special Functions, Varna 1996 Proc. of 3rd Internat. Workshop, Institute of Mathematics and Inform., Bulgarian Acad. of Sciences, Sofia, (1998), 589–591.

    Google Scholar 

  10. R. Herrmann, Towards a geometric interpretation of generalized fractional integrals–Erdelyi-Kober type integrals on RN, as an example. Fract. Calc. Appl. Anal 17, No 2 (2014), 361–370. 10.2478/s13540-014-0174-4; https://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml.

    MathSciNet  MATH  Google Scholar 

  11. N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45, No 5 (2006), 765–772.

    Google Scholar 

  12. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, (2006).

    MATH  Google Scholar 

  13. V. Kiryakova, “A long standing conjecture failes?”. In: P. Rusev, I. Dimovski, V. Kiryakova, (Eds.), Transform Methods and Special Functions, Varna 1996 Proc. of 3rd Internat. Workshop, Institute of Mathematics and Inform., Bulgarian Acad. of Sciences, Sofia, (1998), 579–588.

    Google Scholar 

  14. V. Kiryakova, Generalized Fractional Calculus and Applications. Longman, Harlow and Wiley, New York, (1994)

    MATH  Google Scholar 

  15. A. Kiselev, The twelve lectures in the (non)commutative geometry of differential equations. Preprint IHES/M/12/13. Institut des hautes etudes scientifiques, Bures-sur-Yvette, (2012), 141 p. at http://preprints.ihes.fr/2012/M/M-12–13.pdf.

    Google Scholar 

  16. V.A. Kotel’nikov, On the transmission capacity of’ ether’ and wire in electric communications. Physics-Uspekhi 46, No 7 (2006), 736–744.

    Google Scholar 

  17. A.V. Letnikov, On the historical development of the theory of differentiation with arbitrary index. Sbornik Mathematics (Matematicheskii Sbornik) 3, No 2 (1868), 85–112. [in Russian]; at http://mi.mathnet.ru/eng/msb8048.

    Google Scholar 

  18. F. Mainardi, Considerations on fractional calculus: Interpretations and applications. In: P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Trans-form Methods and Special Functions, Varna 1996. Proc. of 3rd Internat. Workshop, Institute of Mathematics and Inform., Bulgarian Acad. of Sciences, Sofia, (1998), 594–597.

    Google Scholar 

  19. F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons, Fractals 7, No 9 (1996), 1461–1477.

    MathSciNet  MATH  Google Scholar 

  20. J. McNamee, F. Stenger, E.L. Whitney, Whittaker’s cardinal function in retrospect. Mathematics of Computation 25 (1971), 141–154.

    MathSciNet  MATH  Google Scholar 

  21. F.J. Molz, G.J. Fix, S. Lu, A physical interpretation for the fractional derivatives in Levy diffusion. Appl. Math. Letters 15 (2002), 907–911.

    MathSciNet  MATH  Google Scholar 

  22. M. Moshrefi-Torbati, J.K. Hammond, Physical and geometrical interpretation of fractional operators. J. of the Franklin Institute 335, No 6 (1998), 1077–1086.

    MathSciNet  MATH  Google Scholar 

  23. R.R. Nigmatullin, A fractional integral and its physical interpretation. Theor. Math. Phys 90, No 3 (1992), 242–251.

    MathSciNet  MATH  Google Scholar 

  24. P.J. Olver, Equivalence, Invariants and Symmetry. Cambridge University Press, Cambridge, (1995).

    MATH  Google Scholar 

  25. M.D. Ortigueira, J.A. Tenreiro Machado, What is a fractional deriva-tive?. J. Comp. Phys 293 (2015), 4–13.

    MATH  Google Scholar 

  26. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, (1998)

    MATH  Google Scholar 

  27. I. Podlubny, Geometrical and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal 5, No 4 (2002), 367–386. and arXiv:math/0110241.

    MathSciNet  MATH  Google Scholar 

  28. I. Podlubny, V. Despotovic, T. Skovranek, B.H. McNaughton, Shadows on the walls: Geometric interpretation of fractional integration. The J. of Online Mathematics and Its Applications 7 (2007) Article ID 1664

  29. K. Rektorys, Survey of Applicable Mathematics Second Ed., Springer, New York, (1994).

    MATH  Google Scholar 

  30. R.S. Rutman, On physical interpretations of fractional integration and differentiation. Theor. Math. Phys 105, No 3 (1995), 1509–1519.

    MathSciNet  MATH  Google Scholar 

  31. R.S. Rutman, On the paper by R.R. Nigmatullin, “A fractional integral and its physical interpretation”. Theor. Math. Phys 100, No 3 (1994), 1154–1156.

    MATH  Google Scholar 

  32. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York, (1993).

    MATH  Google Scholar 

  33. G. Sardanashvily, Advanced Differential Geometry for Theoreticians: Fiber Bundles, Jet Manifolds and Lagrangian Theory. Lambert Aca-demic Publishing, Saarbrücken, (2013) arXiv: 0908.1886

    Google Scholar 

  34. G. Sardanashvily, Fibre Bundles, Jet Manifolds and Lagrangian Theory. Lectures for Theoreticians arXiv: 0908.1886v2, 158 p

  35. D.J. Saunders, The Geometry of Jet Bundles. Cambridge University Press, Cambridge, (1989)

    MATH  Google Scholar 

  36. C.E. Shannon, Communication in the presence of noise. Proc. of the IEEE 86, No 2 (1998), 447–457.

    Google Scholar 

  37. A.A. Stanislavsky, Probability interpretation of the integral of fractional order. Theor. Math. Phys 138, No 3 (2004), 418–431.

    MATH  Google Scholar 

  38. F. Stenger, Handbook of Sinc Numerical Methods. CRC Press, Taylor and Francis, Boca Raton, London, New York, (2011).

    MATH  Google Scholar 

  39. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions. Springer-Verlag, New York, (1993)

    MATH  Google Scholar 

  40. V.E. Tarasov, Fractional vector calculus and fractional Maxwell’s equations. Annals of Physics 323, No 11 (2008), 2756–2778.

    MathSciNet  MATH  Google Scholar 

  41. V.E. Tarasov, Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. Fundamenta Informaticae (2016) Accepted.

    Google Scholar 

  42. V.E. Tarasov, Lattice fractional calculus. Appl. Math, and Comput 257 (2015), 12–33.

    MathSciNet  MATH  Google Scholar 

  43. V.E. Tarasov, Leibniz rule and fractional derivatives of power functions. J. Comp. Nonl. Dyn 11, No 3 (2016), 031014.

    Google Scholar 

  44. V.E. Tarasov, No violation of the Leibniz rule. No fractional derivative. Comm. Nonlin. Sci. Num. Sim 18, No 11 (2013), 2945–2948.

    MathSciNet  MATH  Google Scholar 

  45. V.E. Tarasov, On chain rule for fractional derivatives. Comm. Nonlin. Sci. Num. Sim 30, No 1–3 (2016), 1–4.

    MathSciNet  MATH  Google Scholar 

  46. V.E. Tarasov, Remark to history of fractional derivatives on complex plane: Sonine-Letnikov and Nishimoto derivatives. Fractional Differential Calculus 6, No 1 (2016), 147–149.

    MathSciNet  MATH  Google Scholar 

  47. V.E. Tarasov, United lattice fractional integro-differentiation. Fract. Calc. Appl. Anal 19, No 3 (2016), 625–664. 10.1515/fca-2016-0034; https://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml

    MathSciNet  MATH  Google Scholar 

  48. V.V. Tarasova, V.E. Tarasov, Economic interpretation of fractional derivatives. Progr. Fract. Differ. Appl (2016) Submitted.

    Google Scholar 

  49. V.V. Tarasova, V.E. Tarasov, Elasticity for economic processes with memory: Fractional differential calculus approach. Fractional Differential Calculus 6, No 2 (2016), 219–232.

    MathSciNet  MATH  Google Scholar 

  50. V.V. Tarasova, V.E. Tarasov, Marginal utility for economical processes with memory. Almanac of Modern Science and Education (Almanah Sovremennoj Nauki i Obrazovaniya) 7 (2016), 108–113. [in Russian]; at http://www.gramota.net/materials/1/2016/7/28.html

    Google Scholar 

  51. F.B. Tatom, The relationship between fractional calculus and fractals. Fractals 3, No 1 (1995), 217–229.

    MathSciNet  MATH  Google Scholar 

  52. M.H. Tavassoli, A. Tavassoli, M.R. Ostad Rahimi, The geometric and physical interpretation of fractional order derivatives of polynomial functions. Differential Geom.-Dynamical Systems 15 (2013), 93–104.

    MathSciNet  MATH  Google Scholar 

  53. J.A. Tenreiro Machado, A probabilistic interpretation of the fractional-order differentiation. Fract. Calc. Appl. Anal 6, No 1 (2003), 73–80.

    MathSciNet  MATH  Google Scholar 

  54. J.A. Tenreiro Machado, Fractional derivatives: Probability interpretation and frequency response of rational approximations. Comm. Nonlin. Sci. Num. Sim 14, No 9–10 (2009), 3492–3497.

    Google Scholar 

  55. J.A. Tenreiro Machado, A.M. Galhano, J.J. Trujillo, Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal 16, No 2 (2013), 479–500. 10.2478/s13540-013-0030-y https://www.degruyter.com/viewZj/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.

    MathSciNet  MATH  Google Scholar 

  56. J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Comm. Nonlin. Sci. Num. Sim 16, No 3 (2011), 1140–1153.

    MathSciNet  MATH  Google Scholar 

  57. E.T. Whittaker, On the functions which are represented by the expansions of the interpolation-theory. Proc. of the Royal Soc. Edinburgh 35 (1915), 181–194.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily E. Tarasov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.E. Geometric Interpretation of Fractional-Order Derivative. FCAA 19, 1200–1221 (2016). https://doi.org/10.1515/fca-2016-0062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0062

MSC 2010

Key Words and Phrases

Navigation