Skip to main content
Log in

Weighted bounded solutions for a class of nonlinear fractional equations.

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Let T be a bounded linear operator defined on a Banach space X. We investigate the existence of solutions for a class of nonlinear fractional equation in the form

$$\left( * \right)\left\{ \begin{array}{l} {\Delta ^\alpha }Uu\left( n \right) = Tu\left( n \right) + f,\,\,\left( {n,u\left( n \right)} \right)\,,\,n \in {N_0},0 \alpha \le 1; \\ u\left( 0 \right) = x, \\ \end{array} \right.$$

on the vector-valued weighted sequence space

$$l_f^\infty \left( {N;X} \right) = \left\{ {x:N \to X/\begin{array}{*{20}{c}} {\sup } \\ {n \in N} \\ \end{array}\frac{{\left\| {x\left( n \right)} \right\|}}{{nn!}} \infty } \right\}.$$

Our analysis relies on the fixed point theory and operator-theoretical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abdeljawad, On Riemann and Caputo fractional differences. Comput. Math. Appl. 62 (2011), 1602–1611.

    Article  MathSciNet  Google Scholar 

  2. T. Abdeljawad, F.M. Atici, On the definitions of nabla fractional operators. Abstr. Appl. Anal. 2012 (2012), 1–13.

    MathSciNet  MATH  Google Scholar 

  3. R.P. Agarwal, C. Cuevas, C. Lizama, Regularity of Difference Equations on Banach Spaces. Springer, Cham (2014).

    Book  Google Scholar 

  4. S. Amini, I.H. Sloan, Collocation method for second kind integral equations with non-compact operators. J. Int. Eq. Appl. 2, 1 (1989), 1–30.

    MATH  Google Scholar 

  5. F.M. Atici, P.W. Eloe, Initial value problems in discrete fractional calculus. Proc. Amer. Math. Soc. 137, 3 (2009), 981–989.

    Article  MathSciNet  Google Scholar 

  6. F.M. Atici and P.W. Eloe, Initial value problems in discrete fractional calculus. Proc. Amer. Math. Soc. 137, No 3 (2009), 981–989.

    Article  MathSciNet  Google Scholar 

  7. F.M. Atici and P.W. Eloe, Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 3 (2009), 1–12.

    Article  MathSciNet  Google Scholar 

  8. F.M. Atici, S. Sengül, Modeling with fractional difference equations. J. Math. Anal. Appl. 369 (2010), 1–9.

    Article  MathSciNet  Google Scholar 

  9. [9]_D. Baleanu, K. Diethelm and E. Scalas, Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2012).

    Book  Google Scholar 

  10. S. Calzadillas, C. Lizama and J.G. Mesquita, A unified approach to discrete fractional calculus and applications. Submitted.

  11. J. Cermák, T. Kisela, L. Nechvátal, Stability and asymptotic properties of a linear fractional difference equation. Adv. Difference Equ. 122 (2012), 1–14.

    MathSciNet  MATH  Google Scholar 

  12. J. Cermák, T. Kisela, L. Nechvátal, Stability regions for linear fractional differential systems and their discretizations. Appl. Math. Comput. 219, 12 (2013), 7012–7022.

    MathSciNet  MATH  Google Scholar 

  13. G.A. Chandler, I.G. Graham, Product integration-collocation methods for noncompact integral operator equations. Math. Comp. 50, 181 (1988), 125–138.

    Article  MathSciNet  Google Scholar 

  14. E. Cuesta, C. Lubich, C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 254 (2006), 673–696.

    Article  MathSciNet  Google Scholar 

  15. S. Elaydi, Stability and asymptoticity of Volterra difference equations: A progress report. J. Comput. Appl. Math. 228, 2 (2009), 504–513.

    Article  MathSciNet  Google Scholar 

  16. C.S. Goodrich, Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 61 (2011), 191–202.

    Article  MathSciNet  Google Scholar 

  17. C.S. Goodrich, On a discrete fractional three-point boundary value problem. J. Differ. Equ. Appl. 18 (2012), 397–415.

    Article  MathSciNet  Google Scholar 

  18. C.S. Goodrich, On a first-order semipositone discrete fractional boundary value problem. Arch. Math. 99 (2012), 509–518.

    Article  MathSciNet  Google Scholar 

  19. F. Jarad, B. Kaymakcalan, K. Tas, A new transform method in nabla discrete fractional calculus. Adv. Diff. Eq. 190 (2012), 1–17.

    MathSciNet  MATH  Google Scholar 

  20. V.B. Kolmanovskii, E. Castellanos-Velasco, J.A. Torres-Munoz, A survey: Stability and boundedness of Volterra difference equations. Nonlinear Anal. 53, 7-8 (2003), 861–928.

    Article  MathSciNet  Google Scholar 

  21. E. Kreyszig, Introductory Functional Analysis with Applications. John Wiley & Sons, New York (1989).

    MATH  Google Scholar 

  22. C. Lizama, p-maximal regularity for fractional difference equations on UMD spaces. Math. Nach. 288, 17-18 (2015), 2079–2092.

    Article  MathSciNet  Google Scholar 

  23. C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability. Proc. Amer. Math. Soc., To appear.

  24. C. Lizama, M. Murillo-Arcila, p-maximal regularity for a class of fractional difference equations on UMD spaces: The case 1 < α ≤ 2. Banach J. Math. Anal., To appear.

  25. Ch. Lubich, I.H. Sloan, V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive type memory term. Math. Comp. 65 (1996), 1–17.

    Article  MathSciNet  Google Scholar 

  26. K.S. Miller, B. Ross, Fractional difference calculus. Proc. Internat. Symp. “Univalent Functions, Fractional Calculus and Their Applications”. Koriyama (1988) and Horwood, Chichester (1989), 139–152.

    Google Scholar 

  27. J. Mallet-Paret, Traveling waves in spatially discrete dynamical systems of diffusive type. Lecture Notes in Math. 1822, Springer, Berlin (2003), 231–298.

    Article  MathSciNet  Google Scholar 

  28. J. Mallet-Paret, G.R. Sell, Differential systems with feedback: time discretizations and Lyapunov functions. Special issue dedicated to Victor A. Pliss on the occasion of his 70th birthday. J. Dynam. Differential Equations. 15, 2-3 (2003), 659–698.

    Article  MathSciNet  Google Scholar 

  29. M.D. Ortigueira, F.J. V. Coito, J.J. Trujillo, Discrete-time differential systems. Signal Processing. 107 (2015), 198–217.

    Article  Google Scholar 

  30. Y. Pan, Z. Han, S. Sun, Z. Huang, The existence and uniqueness of solutions to boundary value problems of fractional difference equations. Math. Sci. 6 (2012), 1–7.

    Article  MathSciNet  Google Scholar 

  31. A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series, Vol. 1. Gordon and Breach Science Publishers, Amsterdam (1986).

    MATH  Google Scholar 

  32. J. M. Sanz-Serna, A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25 (1988), 319–327.

    Article  MathSciNet  Google Scholar 

  33. L. Xiao-Yan and J. Wei, Solving fractional difference equations using the Laplace transform method. Abstr. Appl. Anal. 2014 (2014), 1–6.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lizama.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizama, C., Velasco, M.P. Weighted bounded solutions for a class of nonlinear fractional equations.. FCAA 19, 1010–1030 (2016). https://doi.org/10.1515/fca-2016-0055

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0055

MSC 2010

Key Words and Phrases

Navigation