Skip to main content
Log in

Positive solutions of higher-order nonlinear multi-point fractional equations with integral boundary conditions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this article, we consider a nonlinear higher-order m-point fractional boundary-value problem with integral boundary conditions. We establish criteria for the existence of at least one, two and three positive solutions for higher order nonlinear m-point fractional boundary-value problems with integral boundary conditions by using the four functionals fixed point theorem, the Avery-Henderson fixed point theorem and the Legget-Williams fixed point theorem, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Anderson, I.Y. Karaca Higher-order three-point boundary value problem on time scales. Comput. Math. Appl 56, (2008), 2429–2443.

    Article  MathSciNet  Google Scholar 

  2. R.I. Avery, J. Henderson, Two positive fixed points of nonlinear operators on ordered Banach spaces. Comm. Appl. Nonlinear Anal. 8 (2001), 27–36.

    MathSciNet  MATH  Google Scholar 

  3. R.I. Avery, J. Henderson, D. O’Regan, Four functionals fixed point theorem. Math. Comput. Modelling 48 (2008), 1081–1089.

    Article  MathSciNet  Google Scholar 

  4. M. Benchohra, J.R. Graef, S. Hamani, Existence results for boundary value problems with non-linear fractional differential equations. Applicable Anal. 87, No 7 (2008), 851–863.

    Article  MathSciNet  Google Scholar 

  5. A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389 (2012), 403–411.

    Article  MathSciNet  Google Scholar 

  6. A. Dogan, J.R. Graef, L. Kong, Higher order semipositone multi-point boundary value problems on time scales. Comput. Math. Appl. 60 (2010), 23–35.

    Article  MathSciNet  Google Scholar 

  7. J.R. Graef, L. Kong, B. Yang, Positive solutions for a semipositone fractional boundary value problem with a forcing term. Fract. Calc. Appl. Anal. 15, No 1 (2012), 8–24; DOI: 10.2478/s13540-012-0002-7; http://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  8. J.R. Graef, L. Kong, Q. Kong, M. Wang, Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions. Fract. Calc. Appl. Anal. 15, No 3 (2012), 509–528; DOI: 10.2478/s13540-012-0036-x; http://www.degruyter.com/view/j/fca.2012.15.issue-3/issue-files/fca.2012.15.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  9. J.R. Graef, L. Kong, Existence of positive solutions to a higher order singular boundary value problem with fractional Q-derivatives. Fract. Calc. Appl. Anal. 16, No 3 (2013), 695–708; DOI: 10.2478/s13540-013-0044-5; http://www.degruyter.com/view/j/fca.2013.16.issue-3/issue-files/fca.2013.16.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  10. W. Han, Y. Kao, Existence and uniqueness of nontrivial solutions for nonlinear higher-order three-point eigenvalue problems on time scales. Electron. J. Differential Equations 2008 (2008), Article ID 58, 1–15.

    MathSciNet  MATH  Google Scholar 

  11. V.A. Il’in, E.I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differential Equations 23 (1987), 803–810.

    MATH  Google Scholar 

  12. V.A. Il’in, E.I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator. Differential Equations 23 (1987), 979–987.

    MathSciNet  MATH  Google Scholar 

  13. M. Jia, X. Liu, X. Gu, Uniqueness and asymptotic behavior of positive solutions for a fractional-order integral boundary value problem. Abstr. Appl. Anal. 2012 (2012), Article ID 294694, 1–21.

    MathSciNet  MATH  Google Scholar 

  14. J. Jiang, L. Liu, Positive solutions for nonlinear second-order m-point boundary-value problems. Electron. J. Differential Equations 110 (2009), 1–12.

    MathSciNet  Google Scholar 

  15. J. Jin, X. Liu, M. Jia, Existence of positive solutions for singular fractional differential equations with integral boundary conditions. Electron. J. Differential Equations 2012 (2012), Article ID 63, 1–14.

    MathSciNet  Google Scholar 

  16. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  17. R.W. Legget, L.R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach space. Indiana Univ. Math. J. 28 (1979), 673–688.

    Article  MathSciNet  Google Scholar 

  18. S. Liang, Y. Song, Existence and uniqueness of positive solutions to nonlinear fractional differential equation with integral boundary conditions. Lithuanian Math. J. 52 (2012), 62–76.

    Article  MathSciNet  Google Scholar 

  19. K.B. Oldham, J. Spanier, Fractional Calculus: Theory and Applications, Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974).

    MATH  Google Scholar 

  20. J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado (Eds.), Advances in Fractional Calculus. Springer (2007).

    Google Scholar 

  21. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integral and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993).

    MATH  Google Scholar 

  22. W. Sun, Y. Wang, Multiple positive solutions of nonlinear fractional differential equations with integral boundary value conditions. Fract. Calc. Appl. Anal. 17, No 3 (2014), 605–616; DOI: 10.2478/s13540-014-0188-y; http://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  23. Y. Wang, W. Ge, Existence of multiple positive solutions for even order multi-point boundary value problems. Georgian Mathematical J. 14 (2007), 775–792.

    Article  MathSciNet  Google Scholar 

  24. Y. Wang, Y. Tang, M. Zhao, Multiple positive solutions for a nonlinear 2n-th order m-point boundary value problems. Electron. J. Qualitative Theo. Differential Equations 39 (2009), 1–13.

    Google Scholar 

  25. L. Wang, X. Zhang, Existence of positive solutions for a class of higher-order nonlinear fractional differential equations with integral boundary conditions and a parameter. J. Appl. Math. Comput. 44 (2014), 293–316.

    Article  MathSciNet  Google Scholar 

  26. S. Wong, Positive solutions of singular fractional differential equations with integral boundary conditions. Math. Comput. Modelling 57 (2013), 1053–1059.

    Article  MathSciNet  Google Scholar 

  27. W. Yang, Positive solutions for nonlinear Caputo fractional differential equations with integral boundary conditions. J. Appl. Math. Comput. 44 (2014), 39–59.

    Article  MathSciNet  Google Scholar 

  28. İ. Yaslan, Higher order m-point boundary value problem on time scales. Comput. Math. Appl. 63 (2012), 739–750.

    Article  MathSciNet  Google Scholar 

  29. K. Zhang, J. Xu, Unique positive solution for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16, No 4 (2013), 937–948; DOI: 10.2478/s13540-013-0057-0; http://www.degruyter.com/view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  30. C. Zhao, Existence and uniqueness of positive solutions to higher-order nonlinear fractional differential equation with integral boundary conditions. Electron. J. Differential Equations 2012 (2012), Article ID 234, 1–11.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günendi Mustafa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, G., İsmail, Y. Positive solutions of higher-order nonlinear multi-point fractional equations with integral boundary conditions. FCAA 19, 989–1009 (2016). https://doi.org/10.1515/fca-2016-0054

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0054

MSC 2010

Key Words and Phrases

Navigation