Skip to main content
Log in

Spatial Dispersion of Elastic Waves in a Bar Characterized by Tempered Nonlocal Elasticity

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We apply the framework of tempered fractional calculus to investigate the spatial dispersion of elastic waves in a one-dimensional elastic bar characterized by range-dependent nonlocal interactions. The measure of the interaction is given by the attenuation kernel present in the constitutive stress-strain relation of the bar, which follows from the Kröner-Eringen’s model of nonlocal elasticity. We employ a fractional power-law attenuation kernel and spatially temper it, to make the model physically valid and mathematically consistent. The spatial dispersion relation is derived, but it turns out to be difficult to solve, both analytically and numerically. Consequently, we use numerical techniques to extract the real and imaginary parts of the complex wavenumber for a wide range of frequency values. From the dispersion plots, it is found that the phase velocity dispersion of elastic waves in the tempered nonlocal elastic bar is similar to that from the time-fractional Zener model. Further, we also examine the unusual attenuation pattern obtained for the elastic wave propagation in the bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Agarwal, D.N. Pattanayak, E. Wolf, Electromagnetic fields in spatially dispersive media. Phys. Rev. B. 10, No 4 (1974), 1447–1475.

    MathSciNet  Google Scholar 

  2. T.M. Atanacković, B. Stanković, Generalized wave equation in nonlocal elasticity. Acta Mech. 208, No 1-2 (2009), 1–10.

    MATH  Google Scholar 

  3. B. Banerjee, An Introduction to Metamaterials and Waves in Composites. CRC Press, London, (2011).

    Google Scholar 

  4. D.K. Banerjee, Y.H. Pao, Thermoelastic waves in anisotropic solids. J. Acoust. Soc. Am. 56, No 5 (1974), 1444–1454.

    MATH  Google Scholar 

  5. A.B. Bhatia, Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids. Dover Publications, New York, (2012).

    Google Scholar 

  6. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1, No 2 (2015), 73–85.

    Google Scholar 

  7. J.M. Carcione, A generalization of the Fourier pseudospectral method. Geophysics. 75, No 6 (2010), A53–A56.

    Google Scholar 

  8. A. Carpinteri, P. Cornetti, A. Sapora, A fractional calculus approach to nonlocal elasticity. Eur. Phys. J.-Spec. Top. 193, No 1 (2011), 193–204.

    MATH  Google Scholar 

  9. Á. Cartea, D. del-Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E. 76, No 4 (2007), 041105.

    Google Scholar 

  10. G. Casula, J.M. Carcione, Generalized mechanical model analogies of linear viscoelastic behaviour. B. Geofis. Teor. Appl. 34, No 136 (1992), 235–256.

    Google Scholar 

  11. N. Challamel, D. Zorica, T.M. Atanacković, D.T. Spasić, On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation. Cr. Mecanique. 341, No 3 (2013), 298–303.

    Google Scholar 

  12. S.C. Chapra, R.P. Canale, Numerical Methods for Engineers. McGraw-Hill, New York, (2009).

    Google Scholar 

  13. W. Chen, S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, No 4 (2004), 1424–1430.

    Google Scholar 

  14. A.C. Eringen, D.G.B Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10, No 3 (1972), 233–248.

    MathSciNet  MATH  Google Scholar 

  15. A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, No 5 (1972), 425–435.

    MATH  Google Scholar 

  16. A.C. Eringen, Vistas of nonlocal continuum physics. Int. J. Eng. Sci. 30, No 10 (1992), 1551–1565.

    MathSciNet  MATH  Google Scholar 

  17. A.C. Eringen, Nonlocal Continuum Field Theories. Springer, (2002).

    MATH  Google Scholar 

  18. A. Hanyga, M. Seredyńska, Spatially fractional-order viscoelasticity, non-locality, and a new kind of anisotropy. J. Math. Phys. 53, No 5 (2012), 052902–1–052902–21.

    MathSciNet  MATH  Google Scholar 

  19. S. Holm, S.P. Näsholm, F. Prieur, R. Sinkus, Deriving fractional acoustic wave equations from mechanical and thermal constitutive equations. Comput. Math. Appl. 66, No 5 (2013), 621–629.

    MathSciNet  MATH  Google Scholar 

  20. S. Holm, S.P. Näsholm, Comparison of fractional wave equations for power law attenuation in ultrasound and elastography. Ultrasound Med. Biol. 40, No 4 (2014), 695–703.

    Google Scholar 

  21. H.A.H Jongen, J.M. den Thijssen, M. van Aarssen, W.A. Verhoef, A general model for the absorption of ultrasound by biological tissues and experimental verification. J. Acoust. Soc. Am. 79, No 2 (1986), 535–540.

    Google Scholar 

  22. D. Klatt, U. Hamhaber, P. Asbach, J. Braun, I. Sack, Noninvasive assessment of the rheological behavior of human organs using multi-frequency MR elastography: a study of brain and liver viscoelasticity. Phys. Med. Biol. 52, No 24 (2007), 7281–7294.

    Google Scholar 

  23. E. Kröner, Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, No 5 (1967), 731–742.

    MATH  Google Scholar 

  24. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore, 2010.

    Book  Google Scholar 

  25. D.A. McQuarrie, Mathematical Methods for Scientists and Engineers. University Science Books, Sausalito, (2003).

    MATH  Google Scholar 

  26. M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus. Walter de Gruyter GmbH & Co, Berlin, (2011).

    MATH  Google Scholar 

  27. T. Meidav, Viscoelastic properties of the standard linear solid. Geophysical Prospect. 12, No 1 (1964), 80–99.

    Google Scholar 

  28. T.M. Müller, B. Gurevich, M. Lebedev, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks - A review. Geophysics. 75, No 5 (2010), 75A147–75A164.

    Google Scholar 

  29. S.P. Näsholm, S. Holm, Linking multiple relaxation, power-law attenuation, and fractional wave equations. J. Acoust. Soc. Am. 130, No 5 (2011), 3038–3045.

    Google Scholar 

  30. S.P. Näsholm, S. Holm, On a fractional Zener elastic wave equation. Fract. Calc. Appl. Anal. 16, No 1 (2013), 26–50; DOI: 10.2478/s13540-013-0003-1; http://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  31. S.P. Näsholm, Model-based discrete relaxation process representation of band-limited power-law attenuation. J. Acoust. Soc. Am. 133, No 3 (2013), 1742–1750.

    Google Scholar 

  32. M. Di Paola, M. Zingales, Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int. J. Solids Struct. 45, No 21 (2008), 5642–5659.

    MATH  Google Scholar 

  33. M. Di Paola, G. Failla, A. Pirrotta, A. Sofi, M. Zingales, The mechanically based non-local elasticity: an overview of main results and future challenges. Philos. T. R. Soc. A. 371, No 1993 (2013), 20120433.

    MathSciNet  MATH  Google Scholar 

  34. C. Polizzotto, Nonlocal elasticity and related variational principles. Int. J. Solids Struct. 38, No 42 (2001), 7359–7380.

    MathSciNet  MATH  Google Scholar 

  35. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York, (2007).

    MATH  Google Scholar 

  36. F. Sabzikar, M.M. Meerschaert, J. Chen, Tempered fractional calculus. J. Comput. Phys. 293 (July 2015), 14–28.

    MathSciNet  MATH  Google Scholar 

  37. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integral and Derivatives: Theory and Applications. Gordon & Breach, Yverdon, (1993).

    MATH  Google Scholar 

  38. A. Sapora, P. Cornetti, A. Carpinteri, Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Commun. Nonlinear Sci. 18, No 1 (2013), 63–74.

    MathSciNet  MATH  Google Scholar 

  39. P. Straka, M.M. Meerschaert, R.J. McGough, Y. Zhou, Fractional wave equations with attenuation. Fract. Calc. Appl. Anal. 16, No 1 (2013), 262–272; DOI: 10.2478/s13540-013-0016-9; http://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  40. V. Sundararaghavan, A. Waas, Non-local continuum modeling of carbon nanotubes: Physical interpretation of non-local kernels using atom-istic simulations. J. Mech. Phys. Solids. 59, No 6 (2011), 1191–1203.

    MathSciNet  MATH  Google Scholar 

  41. T.L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power law. J. Acoust. Soc. Am. 97, No 1 (1995), 14–24.

    Google Scholar 

  42. V.E. Tarasov, Lattice model with power-law spatial dispersion for fractional elasticity. Cent. Eur. J. Phys. 11, No 11 (2013), 1580–1588.

    Google Scholar 

  43. Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, No 12 (2005), 124301.

    Google Scholar 

  44. P.N.T Wells, Absorption and dispersion of ultrasound in biological tissue. Ultrasound Med. Biol. 1, No 4 (1975), 369–376.

    Google Scholar 

  45. M. Zhang, P. Nigwekar, B. Castaneda, K. Hoyt, J.V. Joseph, A. Di, S. Agnese, E.M. Messing, J.G. Strang, D.J. Rubens, K.J. Parker, Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med. Biol. 34, No 7 (2008), 1033–1042.

    Google Scholar 

  46. T. Zhu, J.M. Carcione, Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives. Geophys. J. Int. 196, No 3 (2014), 1787–1795.

    Google Scholar 

  47. M. Zingales, Wave propagation in 1D elastic solids in presence of long-range central interactions. J. Sound Vib. 330, No 16 (2011), 3973–3989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikash Pandey.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, V., Näsholm, S.P. & Holm, S. Spatial Dispersion of Elastic Waves in a Bar Characterized by Tempered Nonlocal Elasticity. FCAA 19, 498–515 (2016). https://doi.org/10.1515/fca-2016-0026

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0026

MSC 2010

Key Words and Phrases

Navigation