Skip to main content
Log in

Initial Value Problem of Fractional Integro-Differential Equations in Banach Space

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper is devoted to study the existence of solutions of nonlinear fractional integro-differential equation, via the techniques of measure of noncompactness. The investigation is based on a Schauder’s fixed point theorem. The main result is less restrictive than those given in the literature. An illustrative example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109 (2010), 973–1033.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Boundary Val. Probl. 2009 (2009), 1–12.

    MATH  Google Scholar 

  3. J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York and Basel (1980).

    MATH  Google Scholar 

  4. M. Benchohra, J. R. Graef and S. Hamani, Existence results for boundary value problems with non-linear fractional differential equations. Appl. Anal. 87, No 7 (2008), 851–863.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Benchohra, S. Hamani, Nonlinear boundary value problems for differential inclusion with Caputo fractional derivative. Topol. Method. Nonlinear Anal. 32, No 1 (2008), 115–130.

    MathSciNet  MATH  Google Scholar 

  6. M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order. Surv. Math. Appl. No 3 (2008), 1–12.

    Google Scholar 

  7. M. Benchohra, M. N’Guerekata, G. M. Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order. J. Cubo. Math. 12, No 3 (2010), 35–48.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Belmekki, J. J. Nieto, and R. Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation. Boundary Val. Probl. 2009 (2009), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Debbouche, M. M. El-Borai, Weak almost periodic and optimal mild solutions of fractional evolution equations. Electron. J. Diff. Equ. No 46 (2009), 1–8.

    Google Scholar 

  10. K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, New York (1985).

    Book  MATH  Google Scholar 

  11. T. Diagana, G. M. Mophou, M. N’Guerekata, On the existence of mild solutions to some semilinear fractional integrodifferential equations. Electron. J. Qual. Theory. Diff. Equ. 58 (2010), 1–17.

    MATH  Google Scholar 

  12. M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons and Fractals 14 (2002), 433–440.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. J. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic Publishers, Dordrecht (1996).

    Book  MATH  Google Scholar 

  14. W. Glockle, G. Nonnenmacher, A fractional calculus approach of selfsimilar protein dynamics. J. Biophys. 68 (1995), 46–53.

    Article  Google Scholar 

  15. H. P. Heinz, On behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 7 (1983), 1351–1371.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).

    Book  MATH  Google Scholar 

  17. A. Jawahdou, Mild solutions of functional semilinear evolution Volterra integrodifferential equations on an unbounded interval. Nonlinear Anal. 74, No 18 (2011), 7325–7332.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Jawahdou, Mild Solutions of fractional semilinear integrodifferential equations on an unbounded interval. Appl. Math. 4, No 7 (2013), 34–39.

    Article  Google Scholar 

  19. O. K. Jaradat, A. Al-Omari, S. Momani, Existence of the mild solution for fractional semilinear initial value problem. Nonlinear Anal. Theory. Method. Appl. 69, No 9 (2008), 3153–3159.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Kilbas, A. Srivastava, H. M. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, North Holland (2006).

    MATH  Google Scholar 

  21. F. Li, M. N’Guerekata, An existence result for neutral delay integrodifferential equations with fractional order and nonlocal conditions. Abstr. Appl. Anal. 2011 (2011), 1–20.

    MathSciNet  MATH  Google Scholar 

  22. V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009).

    MATH  Google Scholar 

  23. V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. Theory. Methods Appl. 69, No 8 (2008), 2677–2682.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Lakshmikantham, Theory of fractional differential inequalities and applications. Commun. Appl. Anal. 11, No 3 (2007), 395–402.

    MathSciNet  MATH  Google Scholar 

  25. V. Lakshmikantham, A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 21, No 8 (2008), 828–834.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. X. Li, Existence of solutions of initial value problems for abstract semilinear evolution equations. Acta. Math. Sinica, 48, No 6 (2005), 1089–1094.

    MathSciNet  MATH  Google Scholar 

  27. Z. W. Lv, J. Liang, T. J. Xiao, Solutions to the Cauchy problem for differential equations in Banach spaces with fractional order. Comput. Math. Appl. 62 (2011), 1303–1311.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Metzler, W. Schick, H. Kilian, G. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103 (1995), 7180–7186.

    Article  Google Scholar 

  29. F. Mainardi, P. Paradisi, R. Gorenflo, Probability distributions generated by fractional diffusion equations. In: Intern. Workshop on Econophysics (Eds. J. Kertes, I. Kondor), Kluwer Acad. Publ., Dordrecht (1998); http://arxiv.org/abs/0704.0320.

    Google Scholar 

  30. L. Olszowy, S. Wędrychowicz, Mild solutions of semilinear evolution equation on an unbounded interval and their applications. Nonlinear Anal. 72, No 3-4 (2010), 2119–2126.

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  32. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, No 4 (2002), 367–386.

    MathSciNet  MATH  Google Scholar 

  33. R. Rzepka, K. Sadarangani, On solutions of an infinite system of singular integral equations. Math. Comput. Modelling 45, No 9-10 (2007), 1265–1271.

    Article  MathSciNet  MATH  Google Scholar 

  34. H. P. Ye, J. M. Guo, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, No 2 (2007), 1075–1081.

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Zhou and F. Jiao, Existence of mild solutions for neutral evolution equations. Comput. Math. Appl. 59 (2010), 1063–1077.

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real. World. Appl. 11 (2010), 4465–4475.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Jawahdou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawahdou, A. Initial Value Problem of Fractional Integro-Differential Equations in Banach Space. FCAA 18, 20–37 (2015). https://doi.org/10.1515/fca-2015-0003

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0003

Key Words

Key Words and Phrases

Navigation