Skip to main content
Log in

Fucoidan from Undaria pinnatifida regulates type II collagen and COX-2 expression via MAPK and PI3K pathways in rabbit articular chondrocytes

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Fucoidan is a sulfated polysaccharide widely distributed in brown seaweed. It exhibits several bioactivities, such as anti-cancer, anti-tumor, anti-microbial, anti-diabetic and anti-oxidant properties. However, the effects of fucoidan in chondrocytes are not well established. Previously, we have reported in vitro and in vivo anti-inflammatory effects of fucoidan. In this study, we evaluated the effects and regulatory mechanism of fucoidan derived from Undaria pinnatifida on the cyclooxygenase-2 (COX-2) and type II collagen in rabbit articular chondrocytes. Using western blotting and alcian blue staining, respectively, fucoidan was shown to induce type II collagen and sulfated proteoglycan in a dose- and time-dependent manner. Moreover, fucoidan inhibited the COX-2 expression in a dose- and time-dependent manner and increased the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and AKT kinases in chondrocytes. The inhibition of p38 and AKT using SB203580 and LY294002, respectively, in the presence of fucoidan decreased the expression of type II collagen. However, ERK inhibition using PD98050 stimulated type II collagen expression. Fucoidan increased COX-2 expression in the presence of inhibitors of ERK, p38, and AKT kinases. These results conclusively suggested that fucoidan regulated type II collagen expression via the p38 and AKT pathways, and COX-2 expression via the p38, ERK and AKT pathways in rabbit articular chondrocytes. Moreover, given its ability to mediate cell differentiation and exert anti-inflammatory activity, fucoidan may represent a potential therapeutic substance for use in inflammatory conditions, including arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

COX:

cyclooxygenase

DAPI:

4’,6-diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

ECM:

extracellular matrix

ERK:

extracellular signal-regulated kinase

FITC:

fluorescein isothiocyanate

JNK:

c-Jun N-terminal protein kinase

MAPKs:

mitogen-activated protein kinases

PBS:

phosphate buffered saline

RIPA:

ra-dioimmuno precipitation assay buffer

TBST:

Tris-buffered saline/Tween 20

TRITC:

tetramethyl-rhodamine isothiocyanate.

References

  • Araki E., Forster C., Dubinsky J.M., Ross M.E. & Iadecola C. 2001. Cyclooxygenase-2 inhibitor ns-398 protects neu-ronal cultures from lipopolysaccharide-induced neurotoxicity. Stroke 32: 2370–2375.

    Article  CAS  Google Scholar 

  • Bobacz K., Erlacher L., Smolen J., Soleiman A. & Graninger W.B. 2004. Chondrocyte number and proteoglycan synthesis in the aging and osteoarthritic human articular cartilage. Ann. Rheum. Dis. 63: 1618–1622.

    Article  CAS  Google Scholar 

  • Burrage P.S., Mix K.S. & Brinckerhoff C.E. 2006. Matrix metal-loproteinases: role in arthritis. Front. Biosci. 11: 529–543.

    Article  CAS  Google Scholar 

  • Cho Y.S., Jung W.K., Kim J.A., Choi I.W. & Kim S.K. 2009. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chem. 116: 990–994.

    Article  CAS  Google Scholar 

  • Chung H.J., Jeun J., Houng S.J., Jun H.J., Kweon D.K. & Lee S.J. 2010. Toxicological evaluation of fucoidan from Undaria pinnatifida in vitro and in vivo. Phytother. Res. 24: 1078–1083.

    CAS  PubMed  Google Scholar 

  • Cumashi A., Ushakova N.A., Preobrazhenskaya M.E., D’Incecco A., Piccoli A., Totani L., Tinari N., Morozevich G.E., Berman A.E., Bilan M.I. & Usov A.I. 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and an-tiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17: 541–552.

    Article  CAS  Google Scholar 

  • Eo S.H., Cho H.S. & Kim S.J. 2014. Resveratrol regulates type II collagen and COX-2 expression via the ERK, p38 and Akt signaling pathways in rabbit articular chondrocytes. Exp. Ther. Med. 7: 640–648.

    Article  CAS  Google Scholar 

  • Grzanna R., Lindmark L. & Frondoza C.G. 2005. Ginger–an herbal medicinal product with broad anti-inflammatory actions. J. Med. Food 8: 125–132.

    Article  CAS  Google Scholar 

  • Han Y. & Kim S.J. 2016. Simvastatin induces differentiation of rabbit articular chondrocytes via the ERK-1/2 and p38 ki-nase pathways. Exp. Cell Res. 346: 198–205.

    Article  CAS  Google Scholar 

  • Heijink A., Gomoll A.H., Madry H., Drobnič M., Filardo G., Espregueira-Mendes J. & Van Dijk C.N. 2012. Biomechan-ical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg. Sports Traumatol. Arthrosc. 20: 423–435.

    Article  Google Scholar 

  • Hemmingson J.A., Falshaw R., Furneaux R.H. & Thompson K. 2006. Structure and antiviral activity of the galactofucan sul-fates extracted from Undaria pinnatifida (Phaeophyta). J. Appl. Phycol. 18: 185–193.

    Article  CAS  Google Scholar 

  • Hillen J., Geyer C., Heitzmann M., Beckmann D., Krause A., Winkler I., Pavenstadt H., Bremer C., Pap T. & Korb-Pap A. 2017. Structural cartilage damage attracts circulating rheumatoid arthritis synovial fibroblasts into affected joints. Arthritis Res. Ther. 19: 40.

    Article  Google Scholar 

  • Hunziker E.B., Quinn T.M. & Hauselmann H.J. 2002. Quantitative structural organization of normal adult human articular cartilage. Osteoarthr. Cartil. 10: 564–572.

    Article  CAS  Google Scholar 

  • Iovu M., Dumais G. & Du Souich P. 2008. Anti-inflammatory activity of chondroitin sulfate. Osteoarthr. Cartil. 16: S14–S18.

    Article  Google Scholar 

  • Islander U., Jochems C., Lagerquist M.K., Forsblad-d’Elia H. & Carlsten H. 2011. Estrogens in rheumatoid arthritis; the immune system and bone. Mol. Cell. Endocrinol. 335: 14–29.

    Article  CAS  Google Scholar 

  • Karunanithi P., Murali M.R., Samuel S., Raghavendran H.R.B., Abbas A.A. & Kamarul T. 2016. Three dimensional alginate-fucoidan composite hydrogel augments the chondrogenic differentiation of mesenchymal stromal cells. Carbohydr. Polym. 147: 294–303.

    Article  CAS  Google Scholar 

  • Kim S.J., Ju J.W., Oh C.D., Yoon Y.M., Song W.K., Kim J.H., Yoo Y.J., Bang O.S., Kang S.S. & Chun J.S. 2002. ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem. 277: 1332–1339.

    Article  CAS  Google Scholar 

  • Kim B.S., Kang H.J., Park J.Y. & Lee J. 2015. Fucoidan promotes osteoblast differentiation via JNK-and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells. Exp. Mol. Med. 47: e128.

    Article  CAS  Google Scholar 

  • Kim D., Choi B., Song J., Kim S., Oh S., Jin E.H., Kang S.S. & Jin E.J. 2011. TiO2 nanotube stimulate chondrogenic differentiation of limb mesenchymal cells by modulating focal activity. Exp. Mol. Med. 43: 455–461.

    Article  CAS  Google Scholar 

  • Lee S.H., Ko C.I., Jee Y., Jeong Y., Kim M., Kim J.S. & Jeon Y.J. 2013. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydr. Polym. 92: 84–89.

    Article  CAS  Google Scholar 

  • Lefebvre V. 2014. SP0073 Molecular control of cell fate determination in cartilage and joint development. Ann. Rheum. Dis. 73: 20.

    Google Scholar 

  • Ma B., Leijten J.C.H., Wu L., Kip M., van Blitterswijk C.A., Post J.N. & Karperien M. 2013. Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthr. Cartil. 21: 599–603.

    Article  CAS  Google Scholar 

  • Maneix L., Servent A., Porée B., Ollitrault D., Branly T., Bigot N., Boujrad N., Flouriot G., Demoor M., Boumediene K. & Moslemi S. 2014. Up-regulation of type II collagen gene by 17β-estradiol in articular chondrocytes involves Sp1/3, Sox-9, and estrogen receptor α. J. Mol. Med. 92: 1179–1200.

    Article  CAS  Google Scholar 

  • Nile S.H., Ko E.Y., Kim D.H. & Keum Y.S. 2016. Screening of ferulic acid related compounds as inhibitors of xanthine ox-idase and cyclooxygenase-2 with anti-inflammatory activity. Rev. Bras. Farmacogn. 26: 50–55.

    Article  CAS  Google Scholar 

  • Osaki T., Kitahara K., Okamoto Y., Imagawa T., Tsuka T., Miki Y., Kawamoto H., Saimoto H. & Minami S. 2012. Effect of fu-coidan extracted from mozuku on experimental cartilaginous tissue injury. Mar. Drugs 10: 2560–2570.

    Article  CAS  Google Scholar 

  • Pap T. & Korb-Pap A. 2015. Cartilage damage in osteoarthritis and rheumatoid arthritis–two unequal siblings. Nat. Rev. Rheumatol. 11: 606–615.

    Article  Google Scholar 

  • Park S.B., Chun K.R., Kim J.K., Suk K., Jung Y.M. & Lee W.H. 2010. The differential effect of high and low molecular weight fucoidans on the severity of collagen-induced arthritis in mice. Phytother. Res. 24: 1384–1391.

    Article  CAS  Google Scholar 

  • Park S.J., Lee K.W., Lim D.S. & Lee S. 2011. The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells Dev. 21: 2204–2211.

    Article  Google Scholar 

  • Phull A.R., Eo S.H., Abbas Q., Ahmed M. & Kim S.J. 2016. Applications of chondrocyte-based cartilage engineering: an overview. BioMed Res. Int. 2016: 1879837.

    Article  Google Scholar 

  • Phull A.R., Eo S.H. & Kim S.J. 2017a. Oleanolic acid (OA) regulates inflammation and cellular dedifferentiation of chondro-cytes via MAPK signaling pathways. Cell. Mol. Biol. (Noisy-le-Grand) 63: 12–17.

    Article  Google Scholar 

  • Phull A.R. & Kim S.J. 2017. Fucoidan as bio-functional molecule: Insights into the anti-inflammatory potential and associated molecular mechanisms. J. Funct. Foods 38: 415–426.

    Article  CAS  Google Scholar 

  • Phull A.R., Majid M., Haq I.U., Khan M.R. & Kim S.J. 2017b. In vitro and in vivo evaluation of anti-arthritic, antioxidant efficacy of fucoidan from Undaria pinnatifida (Harvey) Suringar. Int. J. Biol. Macromol. 97: 468–480.

    Article  CAS  Google Scholar 

  • Poole A.R., Kobayashi M., Yasuda T., Laverty S., Mwale F., Kojima T., Sakai T., Wahl C., El-Maadawy S., Webb G. & Tchetina E. 2002. Type II collagen degradation and its regulation in articular cartilage in osteoarthritis. Ann. Rheum. Dis. 61: ii78–ii81.

    Article  CAS  Google Scholar 

  • Rainsford K.D. 2007. Anti-inflammatory drugs in the 21st century, pp. 3–27. In: Harris R.E. (ed.) Inflammation in the Pathogenesis of Chronic Diseases. Springer.

    Chapter  Google Scholar 

  • Yang C., Chung D., Shin I.S., Lee H., Kim J., Lee Y. & You S. 2008. Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. Int. J. Biol. Macromol. 43: 433–437.

    Article  CAS  Google Scholar 

  • Yoo Y.C., Kim W.J., Kim S.Y., Kim S.M., Chung M.K., Park J.W., Suh H.H., Lee K.B. & Park Y.I. 2007. Immunomod-ulating activity of a fucoidan isolated from Korean Undaria pinnatifida sporophyll. Algae 22: 333–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Ja Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phull, A.R., Kim, S.J. Fucoidan from Undaria pinnatifida regulates type II collagen and COX-2 expression via MAPK and PI3K pathways in rabbit articular chondrocytes. Biologia 72, 1362–1369 (2017). https://doi.org/10.1515/biolog-2017-0158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0158

Key words

Navigation