Skip to main content

Advertisement

Log in

Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The benefits of biochar application are well described in tropical soils, however there is a dearth of information on its effects in agricultural temperate soils. An interesting and little explored interaction may occur in an intensive agriculture setting; biochar addition may modify the effect of commonplace N-fertilization. We conducted a field experiment to study the effects of biochar application at the rate of 0, 10 and 20 t ha-1 (B0, B10 and B20) in combination with 0, 40 and 80 kg N ha-1 of N-fertilizer (N0, N40, N80). We followed nitrous oxide (N2O) emissions, analysed a series of soil physicochemical properties and measured barley yield in a Haplic Luvisol in Central Europe. Seasonal cumulative N2O emissions from B10N0 and B20N0 treatments decreased by 27 and 25% respectively, when compared to B0N0. Cumulative N2O emissions from N40 and N80 combined with B10 and B20 were also lower by 21, 19 and 25, 32%, respectively compared to controls B0N40 and B0N80. Average pH was significantly increased by biochar addition. Increased soil pH and reduces NO-3 content seen in biochar treatments could be the two possible mechanisms responsible for reduced N2O emissions. There was a statistically significant increase of soil water content in B20N0 treatment compared to B0N0 control, possibly as a result of larger surface area and the presence of microspores having altered pore size distribution and water-holding capacity of the soil. Application of biochar at the rate of 10 t ha-1 had a positive effect on spring barley grain yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agegnehu G., Bass A. M., Nelson P. N & Bird M. I. 2016. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. SciTot. Environ. 543: 295–306.

    CAS  Google Scholar 

  • Agegnehu G., Bass A. M., Nelson P. N., Muirhead B., Wright G. & Bird M. I. 2015. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. AgricEcosyst. Environ. 213: 72–85.

    Article  CAS  Google Scholar 

  • Anderson C. R., Hamonts K., Clough T. J. & Condron L. M. 2011. Biochar does not affect soil N-transformations or mi-crobial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria. AgricEcosyst. Environ. 191: 63–72.

    Article  CAS  Google Scholar 

  • Appel T. & Klein B. 2015. Mineralization and immobilization of nitrogen in soil amended with biochar, compost and co-composted biochar, pp. 112–113. In: Understanding biochar mechanisms for practical implementation, Hochshule Geisen-heim University.

    Google Scholar 

  • Atkinson C. J., Fitzgerald J. D. & Hipps N. A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337: 1–18.

    Article  CAS  Google Scholar 

  • Barrow C. J. 2012. Biochar: potential for countering land degradation and for improving agriculture. ApplGeogr. 34: 21–28.

    Google Scholar 

  • Case S. D. C., McNamara N. P., Reay D. S. & Whitaker J. 2012. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—the role of soil aeration. Soil Biol. Biochem. 51: 125–134.

    Article  CAS  Google Scholar 

  • Castaldi S., Riondino M., Baronti S., Esposito F. R., Marzaioli R., Rutigliano F. A., Vaccari F.P. & Miglietta F. 2011. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere. 85: 1464–1471.

    Article  CAS  PubMed  Google Scholar 

  • Cayuela M. L., Van Zwieten L., Singh B. P., Jeffery S., Roig A. & Sánchez-Monedero M. A. 2014. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. AgrEcosyst. Environ. 191: 5–16.

    Article  CAS  Google Scholar 

  • Clough T. J., Condron L. & Kammann Cand Müller C. 2013. A review of biochar and soil nitrogen dynamics. Agronomy 3: 275–93.

    Article  CAS  Google Scholar 

  • Czachor H. & Lichner Ľ. 2013. Temperature influences water sorptivity of soil aggregates. JHydrol. Hydromech. 61: 84–87.

    Article  Google Scholar 

  • Chintala R., Owen R., Kumar S., Schumacher T. E. & Malo D. 2014a. Biochar impacts on denitrification under different soil water contents. World Cong. Soil Sci. 6: 157–157.

    Google Scholar 

  • Delgado J. A. & Follett R. F. 2010. Advances in nitrogen management for water quality. Soil Water Conservation Society, Ankeny, IA, 424 pp.

    Google Scholar 

  • Fangueiro D., Senbayran M., Trindade H. & Chadwick D. 2008. Cattle slurry treat-ment by screw press separation and chemically enhanced settling: effect ongreenhouse gas emissions after land spreading and grass yield. BioresourTechnol. 99: 7132–7142.

    Article  CAS  Google Scholar 

  • Felber R., Leifeld J., Horák J. and Neftel A. 2013. Nitrous oxide emission reduction with greenwaste biochar: comparison of laboratory and field experiments. EurJ. Soil Sci. 65: 128–138.

    Article  CAS  Google Scholar 

  • Gruhn P., Goletti F. & Yudelman M. 2000. Integrated nutrient management, soil fertility, and sustainable agriculture: current issues and future challenges, 38 pp. In: Food, agriculture, and the environment discussion paper 32, IFPRI, Washington, USA.

    Google Scholar 

  • HGCA. 2005. The barley growth guide. https://doi.org/www.hgca.com. (accessed 07.07.2016).

    Google Scholar 

  • Hüppi R., Felber R., Neftel A., Six J. & Leifeld J. 2015. Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system. Soil 1: 707–717.

    Article  CAS  Google Scholar 

  • Ippolito J.A., Novak J.M., Busscher W.J., Ahmedna M., Rehrah D. & Watts D.W. 2012. Switchgrass biochar affects two Aridisols. JEnviron. Qual. 41: 1123–1130.

    Article  CAS  Google Scholar 

  • Jones D.L., Rousk J., Edwards-Jones G., DeLuca T.H. & Murphy D.V. 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45: 113–124.

    Article  CAS  Google Scholar 

  • Karer J., Wimmer B., Zehetner F., Kloss S. & Soja G. 2013. Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. AgrFood Sci. 22: 390–403.

    Google Scholar 

  • Karhu K., Mattila T., Bergstroem I. & Regina K. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. AgrEcosyst. Environ. 140: 309–313.

    Article  CAS  Google Scholar 

  • Laird D., Fleming P., Wang B., Horton R. & Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158: 436–442.

    Article  CAS  Google Scholar 

  • Lal R. 2009. Soils and food sufficiency. A review. AgronSust. Develop. 29: 113–133.

    Google Scholar 

  • Leelamanie D.A.L. 2014. Initial water repellency affected organic matter depletion rates of manure amended soils in Sri Lanka. JHydrol. Hydromech. 62: 309–315.

    Article  CAS  Google Scholar 

  • Lehmann J., Gaunt J. & Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems—a review. MitigAdapt. StratGlob. Change. 11: 395–419.

    Google Scholar 

  • Lehmann J., Rillig M.C., Thies J., Masiell C.A., Hockaday W.C. & Crowley D. 2011. Biochar effects on soil biota, A review. Soil Biol. Biochem. 43: 1812–1836.

    Article  CAS  Google Scholar 

  • Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad J.O., Thies J., Luizăo F. J., Petersen J. & Neves E.G. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. SocAm. J. 70: 1719–1730.

    Article  CAS  Google Scholar 

  • Liyanage T.D.P. & Leelamanie D.A.L. 2016. Influence of organic manure amendments on water repellency, water entry value, and water retention of soil samples from a tropical Ultisol. JHydrol. Hydromech. 64: 160–166.

    Article  Google Scholar 

  • Liu E., Changrong Y., Xurong M., Wenqing H., So H. B., Lin-ping D., Qin L., Shuang L. & Tinglu F. 2010. Long term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in north-west China. Geoderma 150: 173–180.

    Article  CAS  Google Scholar 

  • Liu X.Y., Qu J. J., Li L.Q., Zhang A.F., Jufeng Z., Zheng J.W. & Pan G.X. 2012. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies? - A cross site field experiment from South China. EcolEng. 42: 168–173.

    Google Scholar 

  • Nelissen V., Ruysschaert G., Manka’Abusi D., D’Hose T., De Beuf K., Al-Barri B., Cornelis W. & Boeckx P. 2015. Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. EuropJ. Agronomy 62: 65–78.

    Article  CAS  Google Scholar 

  • Schnell R.W., Vietor D.M., Provin T.L., Munster C.L. & Ca-pareda S. 2012. Capacity of biochar application to maintain energy crop productivity: soil chem-istry, sorghum growth, and runoff water quality effects. JEnviron. Qual. 41: 1044–1051.

    Article  CAS  Google Scholar 

  • Shen J., Tang H., Liu J., Wang C., Li Y., Ge T., Jones D. L. & Wu J. 2014. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. AgrEcosyst. Environ. 188: 264–274.

    Article  CAS  Google Scholar 

  • Simek M. & Cooper J.E. 2002. The influence of soil pH on deni-trification: progress towards the understanding of this interaction over the last 50 years. EuroJ. Soil Sci. 53: 345–354.

    Article  CAS  Google Scholar 

  • Singh B. P., Hatton B.J., Singh B., Cowie A.L. & Kathuria A. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. JEnviron. Qual. 39: 1224–1235.

    Article  CAS  Google Scholar 

  • Steiner C., Teixeira W.G., Lehmann J. & Zech W. 2007. Long term effects of manure, charcoaland mineral fertilization on crop production and fertility on a highly weathered central amazonian upland soil. Plant Soil. 291: 275–290.

    Article  CAS  Google Scholar 

  • Suddick E.C. & Six J. 2013. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. SciTotal Environ. 65: 298–307.

    Google Scholar 

  • Sutton M.A. & van Grinsven H. 2011. The European nitrogen assessment. Sources, effects, and policy perspectives. Cambridge Univ. Press, Cambridge, UK, 664 pp.

    Book  Google Scholar 

  • Van Zwieten L., Kimber S., Morris S., Downie A., Berger E., Rust J. & Scheer C. 2010. Influence of biochars on flux of N2O and CO2from Ferrosol. AustJ. Soil Res. 48: 555–568.

    Article  CAS  Google Scholar 

  • Verhoeven E. & Six J. 2014. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. AgricEcosyst. Environ. 191: 27–38.

    Article  CAS  Google Scholar 

  • Yan F., Schubert S. & Mengel K. 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem. 28: 617–624.

    Article  CAS  Google Scholar 

  • Yuan J., Xu R., Qian W. & Wang R. 2011a. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. JSoil Sediment 11: 741–750.

    Article  CAS  Google Scholar 

  • Yuan J., Xu R. & Zhang, H. 2011b. The forms of alkalis in the biochar produced from crop residues at different temperatures. BioresTechnol. 102: 3488–3497.

    CAS  Google Scholar 

  • Zhang A., Cui L., Pan G., Li L., Hussain Q., Zhang X., Zheng J. & Crowley D. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. AgrEcosyst. Environ. 139: 469–475.

    Article  CAS  Google Scholar 

  • Zhang A., Bian R., Pan G., Cui L., Hussain Q., Li L., Zheng J., Zheng J., Zhang X., Han X. & Yu X. 2012. Effects of biochar amendments on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res. 127: 153–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Horák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horák, J., Kondrlová, E., Igaz, D. et al. Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia 72, 995–1001 (2017). https://doi.org/10.1515/biolog-2017-0109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0109

Key words

Navigation