Skip to main content
Log in

Evaluation of three semi-distributed hydrological models in simulating discharge from a small forest and arable dominated catchment

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Catchment scale hydrological models are promising tools for simulating the effect of catchment-specific processes and management on soil and water resources. Here, we present a model intercomparison study of runoff simulations using three different semi-distributed rainfall-runoff catchment models. The objective of this study was to demonstrate the applicability of the Hydrologiska Byrans Vattenavdelning (HBV-Light); Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport (PERSiST); and INtegrated CAtchment (INCA) models on Somogybabod Catchment, near Lake Balaton, Hungary.

The models were calibrated and validated against observed discharge data at the outlet of the catchment for the period of January 1, 2006 -July 12, 2015. Model performance was evaluated using graphical representations, e.g. daily and monthly hydrographs and Flow Duration Curves (FDC) and model evaluation statistic; Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The simulation results showed that the models provided good estimates of monthly average discharge (0.60-0.90 NSE; 0.60-0.91 R2) and satisfactory results for daily discharge (0.46-0.62 NSE; 0.50-0.67 R2). We found that the application of hydrological models serves as a powerful basis for ensemble modelling of average runoff and could enhance our understanding of the eco-hydrological and transport processes within catchments. On the other hand, it can highlight the uncertainty of model forecasts and the importance of goal specific evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dagnew D.C., Guzman C.D., Zegeye A.D., Tibebu T.Y., Getaneh M., Abate S., Zemale F.A., Ayana E.K., Tilahun S.A. & Steenhuis T.S. 2015. Impact of conservation practices on runoff and soil loss in the sub-humid Ethiopian Highlands: The Debre Mawi watershed. J. Hydrol. Hydromech. 63: 210–219.

    Article  Google Scholar 

  • Farkas C., Gelybó G., Bakacsi Z., Horel Á., Hagyó A., Dobor L., Kása I. & Tóth E. 2014. Impact of expected climate change on soil water regime under different vegetation conditions. Biologia 69: 1510–1519.

    Article  CAS  Google Scholar 

  • Farkas C., Kvćrnř S., Engebretsen A., Barneveld R. & Deelstra J. 2016. Applying profile- and catchment-based mathematical models for evaluating the run-off from a Nordic catchment. J. Hydrol. Hydromech. 64: 218–225.

    Article  Google Scholar 

  • Institute of Geodesy, Cartography and Remote Sensing (FOMI). 1979. Contoured topographic maps at scale 1: 10000. Hungarian Unified Map Projection System.

    Google Scholar 

  • Futter M.N., Erlandsson M., Butterfield D.A., Whitehead P.G., Oni S.K. & Wade A.J. 2014. PERSiST: a flexible rainfallrunoff modelling toolkit for use with the INCA family of models. Hydrol. Earth Syst. Sci. 18: 855–873.

    Article  Google Scholar 

  • Golmohammadi G., Prasher S., Madani A. & Rudra R. 2014. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology 1: 20–39.

    Article  Google Scholar 

  • Hart M.R., Quin B.F. & Nguyen M.L. 2004. Phosphorus run-off from agricultural land and direct fertilizer effects: A review. J. Environ. Qual. 33: 1954–1972.

    Article  CAS  PubMed  Google Scholar 

  • Holko L., Kostka Z., Lichner L. & Píš V. 2006. Variation of nitrates in runoff from mountain and rural areas. Biologia 61(Suppl. 19): S270–S274.

    Article  CAS  Google Scholar 

  • Horel A., Lichner L., Alaoui A., Czachor H., Nagy V. & Tóth E. 2014. Transport of iodide in structured clay-loam soil under maize during irrigation experiments analyzed using HYDRUS model. Biologia 69: 1531–1538.

    Article  CAS  Google Scholar 

  • Horel A., Tóth E., Gelybó Gy., Kása I., Bakacsi Zs. & Farkas C. 2015. Effects of land use and management on soil hydraulic properties. Open Geosci. 7: 742–754.

    Article  Google Scholar 

  • Hughes D. A. 1995. Monthly rainfall-runoff models applied to arid and semiarid catchments for water resource estimation purposes. Hydrolog. Sci. J. 40: 751–769.

    Article  Google Scholar 

  • IUSS Working Group WRB. 2006. World reference base for soil resources. 2006. World Soil Resources Reports. NO. 103. Rome, FAO.

    Google Scholar 

  • Jakab G. 2008. Természeti tényezők hatása a talajpusztulás von-alas formáinak kialakulására. (Influence of natural factors on the development of linear erosion types.) PhD Thesis. Budapest. 140 pp. (in Hungarian)

    Google Scholar 

  • Justić D., Rabalais N.N., Turner R.E. & Dortch Q. 1995. Changes in nutrient structure of river-donimated coastal waters: Stoi-chiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science 40: 339–356.

    Article  Google Scholar 

  • Kirchner P.B., Bales R.C., Musselman K.N. & Molotch N.P. 2009. Multi-scale observations and modeling of the snowpack in a forested Sierra Nevada catchment. Fall meeting, Amer. Geophys. Union 90(52): Abstract C23D-08.

    Google Scholar 

  • Leys A., Govers G., Gillijns K., Berckmoes E. & Takken I. 2010. Scale effects on runoff and erosion losses from arable land under conservation and conventional tillage: the role of residue cover. J. Hydrol. 390: 143–154.

    Article  Google Scholar 

  • Li H., Beldring S. & Xu C.Y. 2015. Stability of model performance and parameter values on two catchments facing changes in climatic conditions. Hydrolog. Sci. J. 60: 1317–1330.

    Article  CAS  Google Scholar 

  • Li H. & Zhang Y. 2016. Regionalising rainfall-runoff modelling for predicting daily runoff in continental Australia. Hydrol. Earth Syst. Sci. Discuss. 14: 101–116.

    Google Scholar 

  • Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D. & Veit T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Amer. Soc. Agri. Biol. En-gine. 50: 885–900.

    Google Scholar 

  • Mwakalila S., Campling P., Feyen J., Wyseure G. & Beven K. 2001. Application of a data-based mechanistic modelling (DBM) approach for predicting runoff generation in semi-arid regions. Hydrol. Process. 15: 2281–2295.

    Article  Google Scholar 

  • Nash I.E. & Sutcliffe I.V. 1970. River flow forecasting through conceptual models. J. Hydrol. 10: 282–290.

    Article  Google Scholar 

  • New M., Lister D., Hulme M. & Makin I. 2002. A high-resolution data set of surface climate over global land areas. Climate Res. 21: 1–25.

    Article  Google Scholar 

  • Ouyang F., Lü H., Zhu Y., Zhang J., Yu Z., Chen X. & Li M. 2014. Uncertainty analysis of downscaling methods in assessing the influence of climate change on hydrology. Stoch. Env. Res. Risk. A. 28: 991–1010.

    Article  Google Scholar 

  • Pechlivanidis I.G., Jackson B.M., MCintyre N.R. & Wheather H.S. 2011. Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Global NEST J. 13: 193–214.

    Google Scholar 

  • Pomeroy J.W., Boer de D. & Martz L.W. 2005. Hydrology and Water Resources of Saskatchewan. Centre for Hydrology Report. University of Saskatchewan, Saskatoon, Saskatchewan. 25 pp.

    Google Scholar 

  • Ponyi J. & P. Zánkai N. 2003. A Tetves-patak hidrozoológai vizs-gálata. (The hydro-zoological examination of Tetves-Stream). Natura Somogyiensis 5: 29–40. (in Hungarian)

    Google Scholar 

  • Price K., Jackson C.R., Parker A.J., Reitan T., Dowd J. & Cyterski M. 2011. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina. United States. Water. Resour. Res. 47: W02516

    Google Scholar 

  • Reynolds J.E., Halldin S., Xu C.Y., Seibert J. & Kauffeldt A. 2015. Sub-daily runoff simulations with parameters inferred at the daily time scale. Hydrol. Earth Syst. Sci. Discuss. 12: 7437–7467.

    Article  Google Scholar 

  • Rumsey C.A., Matthew P., Susong M.D., Tillman F.D. & Anning D.W. 2015. Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin. J. Hydrol. Regional Studies 4(Part B): 91–107.

    Google Scholar 

  • Schneiderman E.M., Steenhuis T.S., Thongs N.J., Easton Z.M., Zion M.S. Neal A.L., Mendoza G.E & Walter, M.T. 2007. Incorporating variable source area hydrology to a curve-number-based watershed model. Hydrol. Process. 21: 3420–3430.

    Article  Google Scholar 

  • Seibert, J. & Vis M.J.P. 2012. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol. Earth Syst. Sci. 16: 3315–3325

    Article  Google Scholar 

  • Shi Y., Davis K.J., Duffy C.J. & Yu X. 2011. A Watershed Scale Groundwater-Land-Surface Model Poster. 25th Conference on Hydrology, Seattle, WA. American Meteorological Society.

    Google Scholar 

  • Singh J., Knapp H.V., Arnold J.G. & Demissie M. 2005. Hydro-logic modeling of the Iroquois River watershed using HSPF and SWAT. J. Amer. Water Res. Assoc. 41: 361–375.

    Article  Google Scholar 

  • Šurda P., Lichner L., Nagy V., Kollár J., Iovino M. & Horel Á. 2015. Effects of vegetation at different succession stages on soil properties and water flow in sandy soil. Biologia 70: 1474–1479.

    Article  Google Scholar 

  • Szűcs P. 2012. Az erózió léptékfüggése. (Scale dependency of erosion). PhD Thesis. Pannon Egyetem Növénytermesztés és Kertészeti tudományok Doktori Iskola. Keszthely. 139 pp. (in Hungarian).

    Google Scholar 

  • Tague C. & Grant G.E. 2009. Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions. Water Resour. Res. 45: W07421.

    Article  Google Scholar 

  • Tóth A., Jakab G., Huszár T., Kertész Á. & Szalai Z. 2001. Soil erosion measurements in the Tetves catchment, Hungary. In: Proceedings of the Trilateral Co-operation Meeting on Physical Soil Degradation, Bratislava, pp. 13–24.

    Google Scholar 

  • Varga-Haszonits Z. 1977. Agrometeorológia. Mezőgazdasági Ki-adó, Budapest. 224 pp. (in Hungarian)

    Google Scholar 

  • Whitehead P.G., Wilson E.J. & Butterfield D. 1998a. A semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA): Part I - model structure and process equations. Sci. Tot. Environ. 210-211: 547–558.

    Article  Google Scholar 

  • Whitehead P.G., Wilson E.J., Butterfield D. & Seed K. 1998b. A semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA): Part II - application to large river basins in south Wales and Eastern England. Sci. Tot. Environ. 210-211: 559–584.

    Article  Google Scholar 

  • Ye W., Bates B.C., Viney N.R., Sivapalan, M. & Jakeman A.J. 1997. Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments. Water Resour. Res. 33: 153–166.

    Article  Google Scholar 

  • Zhang X. & Lindström G. 1996. A comparative study of a Swedish and a Chinese hydrological model. J. Amer. Water Resour. Assoc. 32: 985–994.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Györgyi Gelybó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kása, I., Gelybó, G., Horel, Á. et al. Evaluation of three semi-distributed hydrological models in simulating discharge from a small forest and arable dominated catchment. Biologia 72, 1002–1009 (2017). https://doi.org/10.1515/biolog-2017-0108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0108

Key words

Navigation