Skip to main content
Log in

Molecular characterisation and functional analysis of a cytochrome P450 gene in cotton

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Verticillium wilt causes devastating loss of yield and quality in many crops, including cotton. To determine the molecular mechanism of resistance to verticillium wilt in cotton, we isolated a new cytochrome P450 gene, CYP94C1, and analysed its function. We obtained the complete open reading frame, which encodes a protein of 500 amino acids. The results of the functional analysis showed that resistance to verticillium wilt was enhanced when the gene was silenced using the virus-induced gene silencing (VIGS) method in cotton. GbCYP94C1-overexpressing Arabidopsis was more susceptible to Verticillium dahliae compared with the wild-type. In addition, GbCYP94C1 played a role in plant wound responses and in the expression of certain jasmonic acid (JA) signalling pathway. The results suggest that GbCYP94C1 plays a role in verticillium wilt resistance in cotton via the JA signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VIGS:

virus-induced gene silencing

JA:

jasmonic acid

qRT-PCR:

quantitative polymerase chain reaction

MeJA:

methyl jasmonate

V. dahlia :

Verticillium dahlia

References

  • Aubert Y., Widemann E., Miesch L., Pinot F. & Heitz T. 2015. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. J. Exp. Bot. 66: 3879–3892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak S., Tax F.E., Feldmann K.A., Galbraith D.W. & Feyereisen R. 2001. CYP83B1, a Cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckers G.J. & Spoel S.H. 2006. Fine-tuning plant defence signalling: Salicylate versus jasmonate. Plant Biol. (Stuttg). 8: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Benveniste I., Bronner R., Wang Y., Compagnon V., Michler P., Schreiber L., Salaün J.P., Durst F. & Pinot F. 2005. CYP94A1, a plant cytochrome P450-catalyzing fatty acid omega-hydroxylase, is selectively induced by chemical stress in Vicia sativa seedlings. Planta 221: 881–890.

    Article  CAS  PubMed  Google Scholar 

  • Benveniste I., Tijet N., Adas F., Philipps G., Salaun J.P. & Durst F. 1998. CYP86A1 from Arabidopsis thaliana encodes a cytochrome P450-dependent fatty acid omega-hydroxylase. Biochem. Biophys. Res. Commun. 243: 688–693.

    Article  CAS  PubMed  Google Scholar 

  • Bostock R.M. 2005. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol.43: 545–580.

    Article  CAS  PubMed  Google Scholar 

  • Clough S.J. & Bent A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.

    Article  CAS  PubMed  Google Scholar 

  • Davidsson P.R., Kariola T., Niemi O. & Palva E.T. 2013. Pathogenicity of and plant immunity to soft rot pectobacteria. Front. Plant Sci. 4: 191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1: 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Ehlting J., Sauveplane V., Olry A., Ginglinger J.F., Provart N.J. & Werck-Reichhart D. 2008. An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biol. 8: 47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fonseca S., Chini A., Hamberg M., Adie B., Porzel A., Kramell R., Miersch O., Wasternack C. & Solano R. 2009. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5: 344–350.

    Article  CAS  PubMed  Google Scholar 

  • Fradin E.F., Abd-El-Haliem A., Masini L., van den Berg G.C., Matthieu H.A.J. Joosten. & Thomma B.P. 2011. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol. 156: 2255–2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fradin E.F., Zhang Z., Juarez Ayala J.C., Castroverde C.D., Nazar R. N. Robb J., Liu C.M. & Thomma B.P. 2009. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 150: 320–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W., Long L., Xu L., Lindsey K., Zhang X. & Zhu L. 2016. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton. J. Integr. Plant Biol. 58: 503–513.

    Article  CAS  PubMed  Google Scholar 

  • Gao W., Long L., Zhu L.F., Xu L., Gao W.H., Sun L.Q., Liu L.L. & Zhang X.L. 2013a. Proteomic and virus-induced gene silencing (VIGS) Analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol. Cell Proteomics 12: 3690–3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X., Li F., Li M., Kianinejad A.S., Dever J.K., Wheeler T.A., Li Z., He P. & Shan L. 2013b. Cotton GhBAK1 mediates Verticillium wilt resistance and cell death. J. Integr. Plant Biol. 55: 586–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X., Wheeler T., Li Z., Kenerley C.M., He P. & Shan L. 2011. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J.66: 293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gkizi D., Lehmann S., L’Haridon F., Serrano M., Paplomatas E.J., Métraux J.P. & Tjamos S.E. 2016. The innate immune signaling system as a regulator of disease resistance and ISR activity against Verticillium dahliae. Mol. Plant Microbe Interact. 29: 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J. 2005. Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annu. Rev. Phytopathol. 43: 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Heitz T., Widemann E., Lugan R., Miesch L., Ullmann P., Désaubry L., Holder E., Grausem B., Kandel S., Miesch M., Werck-Reichhart D. & Pinot F. 2012. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone Jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287: 6296–6306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian G.L., Cun M.A., Zheng C.L. & Zou Y.F. 2003. Advances in Cotton Breeding for Resistance to Fusarium and Verticillium wilt in the Last Fifty Years in China. Agric. Sci. China 2: 280–288.

    Google Scholar 

  • Kandel S., Sauveplane V., Compagnon V., Franke R., Millet Y., Schreiber L., Werck-Reichhart D. & Pinot F. 2007. Characterization of a methyl jasmonate and wounding-responsive cytochrome P450 of Arabidopsis thaliana catalyzing dicarboxylic fatty acid formation in vitro. FEBS J. 274: 5116–5127.

    Article  CAS  PubMed  Google Scholar 

  • Katsir L., Schilmiller A.L., Staswick P.E., He S.Y. & Howe G.A. 2008. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. USA 105: 7100–7105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klosterman S.J., Atallah Z.K., Vallad G.E. & Subbarao K.V. 2009. Diversity, pathogenicity, and management of verticillium species. Annu. Rev. Phytopathol. 47: 39–62.

    Article  CAS  PubMed  Google Scholar 

  • Konig S., Feussner K., Kaever A., Landesfeind M., Thurow C., Karlovsky P., Gatz C., Polle A. & Feussner I. 2014. Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytol. 202: 823–837.

    Article  PubMed  CAS  Google Scholar 

  • Koo A.J. & Howe G.A. 2012. Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Front. Plant Sci. 3: 19.

    CAS  Google Scholar 

  • Kraus P.F. & Kutchan T.M. 1995. Molecular cloning and heterologous expression of a cDNA encoding berbamunine synthase, a C-O phenol-coupling cytochrome P450 from the higher plant Berberis stolonifera. Proc. Natl. Acad. Sci. USA 92: 2071–2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurotani K., Hayashi K., Hatanaka S., Toda Y., Ogawa D., Ichikawa H., Ishimaru Y., Tashita R., Suzuki T., Ueda M., Hattori T. & Takeda S. 2015. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice. Plant Cell Physiol. 56: 779–789.

    Article  CAS  PubMed  Google Scholar 

  • Le Bouquin R.S.M., Kahn R., Benveniste I., Salaün J.P., Schreiber L., Durst F. & Pinot F. 2001. CYP94A5, a new cytochrome P450 from Nicotiana tabacum is able to catalyze the oxidation of fatty acids to the omega-alcohol and to the corresponding diacid. Eur. J. Biochem. 268: 3083–3090.

    Article  PubMed  Google Scholar 

  • Li C., He X., Luo X., Xu L., Liu L., Min L., Jin L., Zhu L. & Zhang X. 2014. Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression. Plant Physiol. 166: 2179–2194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J.F., Park E., von Arnim A.G. & Nebenfuhr A. 2009. The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5: 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y.B., Han L.B., Wang H.Y., Zhang J., Sun S.T., Feng D.Q., Yang C.L., Sun Y.D., Zhong N.Q. & Xia G.X. 2016. The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton. Plant Physiol. 170: 2392–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y., Schiff M., Marathe R. & Dinesh-Kumar S.P. 2002. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30: 415–429.

    Article  CAS  PubMed  Google Scholar 

  • Mao Y.B., Cai W.J., Wang J.W., Hong G.J., Tao X.Y. Wang L.J., Huang Y.P. & Chen X.Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25: 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  • Parkhi V., Kumar V., Campbell L.A.M., Bell A.A. & Rathore K.S. 2010. Expression of Arabidopsis NPR1 in transgenic cotton confers resistance to non-defoliating isolates of Verticillium dahliae but not the defoliating isolates. J. Phytopath. 158: 822–825.

    Article  CAS  Google Scholar 

  • Pauwels L., Barbero G. F., Geerinck J., Tilleman S., Grunewald W., Pérez A.C., Chico J.M., Bossche R.V., Sewell J., Gil E., García-Casado G., Witters E., Inzé D., Long J.A., De Jaeger G., Solano R. & Goossens A. 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464: 788–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse C.M. & van Loon L.C. 1999. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4: 52–58.

    Article  CAS  PubMed  Google Scholar 

  • Reymond P. & Farmer E.E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1: 401–411.

    Article  Google Scholar 

  • Rowe H.C., Walley J.W., Corwin J., Chan E.K., Dehesh K. & Kliebenstein D.J. 2010. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog. 6: e1000861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmittgen T.D. & Livak K.J. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  • Sheard L.B., Tan X., Mao H., Withers J., Ben-Nissan G., Hinds T.R., Kobayashi Y., Hsu F.F., Sharon M., Browse J., He S.Y., Rizo J., Howe G.A. & Zheng N. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H., Liu Z., Zhu L., Zhang C., Chen Y. Zhou Y., Li F. & Li X. 2012. Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochim. Biophys. Sin. (Shanghai) 44: 555–564.

    Article  CAS  Google Scholar 

  • Sun L., Zhu L., Xu L., Yuan D., Min L. & Zhang X. 2014. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nat. Commun. 5: 5372.

    Article  CAS  PubMed  Google Scholar 

  • Sun Q., Jiang H.Z., Zhu X.Y., Wang W.N., He X.H., Shi Y.Z., Yuan Y.L., Du X.M. & Cai Y.F. 2013. Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing. BMC Genomics 14: 852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamiru M., Undan J.R., Takagi H., Abe A., Yoshida K., Undan J.Q., Natsume S., Uemura A., Saitoh H., Matsumura H., Urasaki N., Yokota T. & Terauchi R. 2015. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.). Plant Mol. Biol. 88: 85–99.

    Article  CAS  PubMed  Google Scholar 

  • Thomma B.P., Penninckx I.A., Broekaert W.F. & Cammue B.P. 2001 The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Townsend B.J., Poole A., Blake C.J. & Llewellyn D.J. 2005 Antisense suppression of a (+)-delta-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol. 138: 516–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner T.A., Liu J., Puckhaber L.S., Bell A.A., Williams H. & Stipanovic R.D. 2015. RNAi construct of a cytochrome P450 gene CYP82D109 blocks an early step in the biosynthesis of hemigossypolone and gossypol in transgenic cotton plants. Phytochemistry 115: 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100: 681–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widemann E., Grausem B., Renault H., Pineau E., Heinrich C. Lugan R., Ullmann P., Miesch L., Aubert Y., Miesch M., Heitz T. & Pinot F. 2015. Sequential oxidation of Jasmonoyl-Phenylalanine and Jasmonoyl-Isoleucine by multiple cytochrome P450 of the CYP94 family through newly identified aldehyde intermediates. Phytochemistry 117: 388–399.

    Article  CAS  PubMed  Google Scholar 

  • Xu F., Yang L., Zhang J., Guo X., Zhang X. & Li Q. 2012. Prevalence of the defoliating pathotype of Verticillium dahliae on cotton in Central China and virulence on selected cotton cultivars. J. Phytopath. 160: 369–376.

    Article  Google Scholar 

  • Xu L., Zhu L., Tu L., Liu L., Yuan D., Jin L., Long L. & Zhang X. 2011. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J. Exp. Bot. 62: 5607–5621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y., Stolz S., Chetelat A., Reymond P., Pagni M. Dubugnon L. & Farmer E.E. 2007. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19: 2470–2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y., Wang X., Yang S., Chi J., Zhang G. & Ma Z. 2011. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Rep. 30: 2085–2096.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y., Wang X.F., Ding Z.G., Ma Q., Zhang G.R., Zhang S.L., Li Z.K., Wu L.Q., Zhang G.Y. & Ma Z.Y. 2013. Tran-scriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genomics 14: 637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youlu Yuan or Yingfan Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Long, L., Sun, Q. et al. Molecular characterisation and functional analysis of a cytochrome P450 gene in cotton. Biologia 72, 43–52 (2017). https://doi.org/10.1515/biolog-2017-0003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0003

Key words

Navigation