Skip to main content
Log in

Synthesis of multifunctional γ-PGA-based superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and controlled drug release

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The anionic, water soluble, biodegradable and biocompatible polymer, poly-γ-glutamic acid (7-PGA) was produced by a Bacillus amyloliquefaciens strain and converted into its nanomeric form for theranostic purpose. In this study, superparamagnetic iron oxide nanoparticles (SPIONs) modified with γ-PGA was prepared by co-precipitation method, and the anticancer drug doxorubicin (DOX) was loaded onto the polymer matrix. This complex assembles as spherical in shape with 82 nm particle size. We hypothesize that SPIONs could deliver the nanoparticle to the target site. The cationic DOX was loaded into the polymer matrix by electrostatic interactions with high loading efficiency and it was confirmed by fluorescence spectroscopy. This multifunctional nanomaterial could be used as the nanomedicine for drug delivery and also for the real time monitoring of the disease progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DLS:

dynamic light scattering

DOX:

doxorubicin

FT-IR:

Fourier transform infrared spectroscopy

γ-PGA:

poly-γ-glutamic acid

MRI:

magnetic resonance imaging

SPIONs:

superparamagnetic iron oxide nanoparticles

TEM:

transmission electron microscopy

VSM:

vibrating sample magnetometer

References

  • Bovarnick M. 1942. The formation of extracellular D (-) glutamic acid poypeptide by Bacillus subtilis. J. Biol. Chem. 145: 415–424.

    Google Scholar 

  • Fujii H. 1963. On the formation of mucilage by Bacillus natto. Part III. Chemical constitutions of mucilage in natto (1). Nippon Nogeikagaku Kaishi 37: 407–411.

    Article  CAS  Google Scholar 

  • Goto A. & Kunioka M. 1992. Biosynthesis and hydrolysis of poly (7-glutamic acid) from Bacillus subtilis IF03335. Biosci. Biotechnol. Biochem. 56: 1031–1035.

    Article  CAS  Google Scholar 

  • Gupta A.K. & Gupta M. 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26: 3995–4021.

    Article  CAS  Google Scholar 

  • Inbaraj B.S. & Chen B.H. 2012. In vitro removal of toxic heavy metals by poly (7-glutamic acid)-coated superparamagnetic nanoparticles. Int. J. Nanomedicine 7: 4419–4432.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunioka M. 1997. Biosynthesis and chemical reactions of poly (amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 47: 469–475.

    Article  CAS  Google Scholar 

  • Li M., Song W., Tang Z., Lv S., Lin L., Sun H., Li Q., Yang Y., Hong H. & Chen X. 2013. Nanoscaled poly(L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl. Mater. Interfaces 5: 1781–1792.

    Article  CAS  Google Scholar 

  • Lu A.H., Salabas E.L. & Schuth F. 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46: 1222–1244.

    Article  CAS  Google Scholar 

  • Makato A. 2010. Occurrence and biosynthetic mechanism of poly-γ-glutamic acid, pp 77–94. In: Hamano Y. (Ed.) Amino-Acid Homopolymers Occurring in Nature, Microbiology Monograph 15, Springer-Verlag, Berlin.

    Google Scholar 

  • Manocha B. & Margaritis A. 2010. Controlled release of doxorubicin from doxorubicin/7-polyglutamic acid ionic complex. J. Nanomater. 2010: 1–9.

    Article  Google Scholar 

  • Prijic S., Scancar J. & Romih R. 2010. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J. Membrane Biol. 236: 167–179.

    Article  CAS  Google Scholar 

  • Rebodos R.L. & Vikesland P.J. 2010. Effects of oxidation on the magnetization of nanoparticulatemagnetite. Langmuir 26: 16745–16753.

    Article  CAS  Google Scholar 

  • Shih I.L. & Van Y.T. 2001. The production of poly (7-glutamic acid) from microorganism and its various applications. Biore-sour. Technol. 79: 207–225.

    Article  CAS  Google Scholar 

  • Shih I.L., Van Y.T. & Chang Y.N. 2002. Application of statistical experimental methods to optimize production of poly (γ-glutamic acid) by Bacillus UcheniformAs CCRC 12826. Enzyme Microb. Technol. 31: 213–220.

    Article  CAS  Google Scholar 

  • Tianlei Q., Xiang Y., Meilin H., Xuming W. & Qunhui W. 2012. Optimization of fermentative production of poly-(γ-glutamic acid) by a newly isolated Bacillus subtilis BABRC-11. Afr. J. Microbiol. Res. 6: 7035–7039.

    Google Scholar 

  • Xu H., Jiang M., Li H., Lu D. & Ouyang P. 2005. Efficient production of poly (7-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem. 40: 519–523.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parameswaran Binod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anju, A.J., Binod, P. Synthesis of multifunctional γ-PGA-based superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and controlled drug release. Biologia 71, 967–971 (2016). https://doi.org/10.1515/biolog-2016-0130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0130

Key words

Navigation