Skip to main content
Log in

Phylogenetic relationships and Y genome origin in Kengyilia (Triticeae: Poaceae) based on single copy gene DMC1

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

To investigate the phylogenetic relationships among Kengyilia and related diploid genera, the genome donor of Kengyilia, and the evolutionary history of polyploid Kengyilia species, disrupted meiotic cDNA1 (DMC1) sequences were analyzed for 11 Kengyilia species, together with 34 diploid taxa from 12 monogenomic genera. Sequence diversity and genealogical analysis suggested that (1) the St and P genomes were donated by Pseudoroegneria and Agropyron, respectively; (2) phylogenetic analyses separated the Y sequences from the St sequences, it confirmed that St and Y genome in Kengyilia species have originated from different donors; (3) the St genome of Kengyilia had several origins and diverse species of Pseudoroegneria might have taken part in the formation of polyploid species of Kengyilia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bothmer R. & Salomon B. 1994. Triticeae: a tribe for food, feed and fun, pp. 1–12. In: Wang R.R.C., Jensen K.B. & Jaussi C. (eds), Proceedings of the 2nd international Triticeae symposium. Utah Logan Press.

  • Chen Z.J. & Pikaard C.S. 1997. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. USA 94: 3442–3447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comai L., Tyaqi A.P., Winter K., Holmes-Davis R. & Reynolds S.H. 2000. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12: 1551–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L., Wall P.K., Leebens-Mack J.H., Lindsay B.G., Soltis D.E., et al., 2006. Widespread genome duplications throughout the history of flowering plants. Genome Res. 16: 738–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewey D.R. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae, pp. 209–279. In: Gustafson J.P. (ed.), Gene Manipulation in Plant Improvement Plenem Press, New York.

  • Doyle J.J., 1990. Isolation of plant DNA from fresh tissue. Focus 12: 1–15.

    Google Scholar 

  • Fan X., Sha L.N., Dong Z.Z., Zhang H.Q., Kang H.Y., Wang Y., Wang X.L., Zhang L., Ding C.B., Yang R.W., Zheng Y.L. & Zhou Y.H. 2013. Phylogenetic relationships and Y genome origin in Elymus L. sensu lato (Triticeae; Poaceae) based on single-copy nuclear Acc1 and Pgk1 gene sequences. Mol. Phylogenet. Evol. 69: 919–928.

    Article  CAS  PubMed  Google Scholar 

  • Feldman M. & Levy A.A. 2009. Genome evolution in allopolyploid wheat a revolutionary reprogramming followed by gradual changes. J. Genet. Genomics 36: 511–518.

    Article  CAS  PubMed  Google Scholar 

  • Fu Y.X. & Li W.H., 1993. Statistical tests of neutrality of mutations. Genetics 133: 69–709.

    Google Scholar 

  • Hudson R.R. 1990. Gene genealogies and the coalescent process, pp. 1–44. In: Futuyma D. & Antonovics J. (eds), Oxford Surveys in Evolutionary Biology. Oxford University Press, New York.

    Google Scholar 

  • Jensen K.B. 1990. Cytology and taxonomy of Elymus kengii, E. grandiglumis, and E. batalinii (Poaceae: Triticeae). Genome 33: 668–673.

    Article  Google Scholar 

  • Jensen K.B. 1996. Genome analysis of Eurasian Elymus thoroldianus, E. melantherus, and E. kokonoricus (Poaceae: Triticeae). Int. J. Plant Sci. 157: 136–141.

    Article  Google Scholar 

  • Jensen K.B. & Chen S.L. 1992. An overview systematic relationships of Elymus and Roegneria. Hereditas 116: 127–132.

    Article  Google Scholar 

  • Lee H.S. & Chen Z.J. 2001. Protein-coding genes are epigeneti-cally regulated in Arabidopsis polyploids. Proc. Natl. Acad. Sci. USA. 98: 675–6758.

    Google Scholar 

  • Liu Q.L., Ge S., Tang H., Zhang X., Zhu G., et al., 2006. Phylogenetic relationships in Elymus (Poaceae, Triticeae) based on the nuclear ribosomal transcribed spacer and chloroplast trnL-F sequences. New Phytol. 170: 411–420.

    Article  CAS  PubMed  Google Scholar 

  • Löve A. 1984. Conspectuse of Triticeae. Feddes Rep. 95: 425–524.

    Google Scholar 

  • Lu B.R. & Bothmer R. 1990. Genomic constitution of Elymus parviglumis and E. pseudonutans, Triticeae (Poaceae). Hereditas 113: 109–119.

    Article  Google Scholar 

  • Mason-Gamer R.J., Orme N.L. & Anderson C.M. 2002. Phy-logenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45: 991–1002.

    Article  CAS  PubMed  Google Scholar 

  • Mason-Gamer R.J., Burns M.M. & Naum M. 2005. Polyploidy, introgression, and complex phylogenetic patterns within Elymus. Czech J. Genet. Plant Breed. 41: 21–26.

    Article  Google Scholar 

  • Nei M. & Li W.H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 76: 5269–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okito P., Mott I.W., Wu Y. & Wang R.R. 2009. A Y genome specific STS marker in Pseudoroegneria and Elymus species (Triticeae: Gramineae). Genome 52: 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Ozkan H., Levy A.A. & Feldman M. 2001. Allopolyploidy induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13: 1735–1747.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen G. & Seberg O. 2002. Molecular evolution and phyloge-netic application of DMC1. Mol. Phylogenet. Evol. 22: 4–50.

    Article  CAS  Google Scholar 

  • Rozas J., Sánchez-DelBarrio J.C., Messeguer X. & Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  • Salina E.A., Numerova O.M., Ozkan H. & Feldman M. 2004. Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat. Genome 47: 860–867.

    Article  CAS  PubMed  Google Scholar 

  • Shaked H., Kashkush K., Ozkan H., Feldman M. & Levy A.A. 2001. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13: 1749–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G.L., Ni Y. & Daley T. 2008. Molecular phylogeny of RPB2 gene reveals multiple origin,geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Mol. Phylogenet. Evol. 46: 897–907.

    Article  CAS  PubMed  Google Scholar 

  • Sun G.L. & Komatsuda T. 2010. Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. Mol. Phylogenet. Evol. 56: 727–733.

    Article  CAS  PubMed  Google Scholar 

  • Tajima F. 1989. Statistical method for testing the neutral mu-tationof hypothesis by DNA polymorphism. Genetics 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Moleculare volutionary genetics analysis using maximum likelihood, evolutionary distance, and maximumparsimony methods. Mol. Biol. Evol. 28: 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torabinejad J. & Mueller R.J. 1993. Genome constitution of the Australian hexaploid grass Elymus scabrus (Poaceae, Triticeae). Genome 36: 147–151.

    Article  CAS  PubMed  Google Scholar 

  • Wang R.R.C., Dewey D.R. & Hsiao C. 1986. Genomic analysis of the tetraploid Pseudoroegneria tauri. Crop Sci. 26: 72–727.

    Google Scholar 

  • Wang R.R.C., Bothmer R.V., Dvorak J., Fedak G., Linde-Laursen I., et al. 1994. Genome symbols in the Triticeae (Poaceae), pp. 29–34. In: Wang R.R.C., Jensen K.B. & Jaussi C. (eds), Proc. 2nd Intern. Triticeae Symp, Logan, Utah, USA.

  • Watterson G.A. 1975. On the number of segregation sites in genetic models without ecombination. Theor. Popul. Biol. 7: 256–276.

    Article  CAS  PubMed  Google Scholar 

  • Yang J.L., Yen C. & Baum B.R. 1992. Kengyilia: synopsis and key to species. Hereditas 116: 25–28.

    Article  Google Scholar 

  • Yen C. & Yang J.L. 1990. Kengyilia gobicola, a new taxon from west China. Can. J. Bot. 68: 1894–1897.

    Article  Google Scholar 

  • Yen C., Yang J.L. & Baum B.R. 2006. Biosystematics of Triticeae. Volume 3. Chinese Agriculture Press, Beijing.

    Google Scholar 

  • Zhang L., Zheng Y.L., Wei Y.M., Liu S.G. & Zhou Y.H. 2005. The genetic diversity and similarities among Kengyilia species based on random amplified microsatellite polymorphism. Genet. Resour. Crop Evol. 52: 1011–1017.

    Article  CAS  Google Scholar 

  • Zeng J., Cao G., Liu J., Zhang H.Q. & Zhou Y.H. 2008a. C-banding analysis of eight species of Kengyilia (Poaceae: Triticeae). J. Appl. Genet. 49: 11–21.

    Article  PubMed  Google Scholar 

  • Zeng J., Zhang L., Fan X., Zhang H.Q., Yang R.W., et al. 2008b. Phylogenetic analysis of Kengyilia species based on nuclear ribosomal DNA internal transcribed spacer sequences. Biol. Plantarum 52: 231–236.

    Article  CAS  Google Scholar 

  • Zhang X.Q., Yang J.L., Yen C., Zheng Y.L. & Zhou Y.H. 2000. Cytogenetic and systematic analysis of Kengyilia gobicola, K. zhaosuensis and K. batalinii var. nana (Poaceae). Genet. Resour. Crop Evol. 47: 451–454.

    Article  Google Scholar 

  • Zhang X.Q., Yen C., Yang J.L. & Yen Y. 1998. Cytogenetic analyses in Kengyilia laxiflora (Poaceae, Triticeae). Plant Syst. Evol. 212: 79–86.

    Article  Google Scholar 

  • Zhou Y.H. 1994. Study on karyotypes of 5 species of Kengyilia. Guihaia 14: 16–169.

    Google Scholar 

  • Zhou Y.H., Zheng Y.L., Yang J.L., Yen C. & Jia J.Z. 2000. Relationships among Kengyilia species assessed by RAPD markers. Acta Phytotaxon. Sin. 38: 515–521.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31270243). We would like to specially thank the American National Plant Germplasm System for providing some of the seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-wu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Tang, Zl., Deng, Jb. et al. Phylogenetic relationships and Y genome origin in Kengyilia (Triticeae: Poaceae) based on single copy gene DMC1. Biologia 71, 298–304 (2016). https://doi.org/10.1515/biolog-2016-0041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0041

Key words

Navigation