Skip to main content

Advertisement

Log in

The effects of tree age and tree species composition on bird species richness in a Central European montane forest

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Large areas of montane forests are commercially harvested, while some other parts remain unmanaged. These conditions provide an opportunity to study the response of bird communities to forest management. Here we focused on the effects of tree species composition and tree age on bird species richness. We counted birds in two types of montane forest (beech and mixed) replicated in three age classes (managed 55–65 years, managed 85–95 years, unmanaged over 200 years) in the Vtáčnik Mountains, Slovakia. Number of bird species at individual study sites (local richness) was predicted solely by the tree age and not by the forest type. Specifically, the number of species was highest in the oldest stands, while the stands of 55–65 and 85–95 years did not differ from each other. By contrast, forest type seems important for total bird species richness (number of species recorded in all study sites of a given type) with more species recorded in mixed forests than in beech forests. The local richness seems thus limited by the amount resources available at a given site, which is highest in the oldest stands irrespective to forest type, probably due to largest amount of food, dead wood or tree cavities, being particularly suitable for habitat specialists. However, larger species pool in mixed forest, enriched by birds adapted to coniferous trees, increases the total number of species observed in this type. We thus recommend to shift the harvest to the highest possible age and to include some other tree species into parts of beech monocultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blondel J. & Mourer-Chauviré C. 1998. Evolution and history of the western Palaearctic avifauna. Trends Ecol. Evol. 1 (2): 488–492. DOI: http://dx.doi.org/10.1016/S0169-5347(98)01461-X

    Article  Google Scholar 

  • Bose A.K., Schelhaas M.J., Mazerolle M.J. & Bongers F. 2014. Temperate forest development during secondary succession: effects of soil, dominant species and management. Eur. J. Forest Res 1 (2): 511–523. DOI: 10.1007/s10342-014-0781-y

    Article  Google Scholar 

  • Castagneri D., Garbarino M., Berretti R. & Motta R. 2010. Site and stand effects on coarse woody debris in montane mixed forests of Eastern Italian Alps. Forest Ecol. Manag. 260 (9). 1592–1598. DOI: 10.1016/j.foreco.2010.08.008

    Article  Google Scholar 

  • Clavero M., Brotons L. & Herrando S. 2011. Bird community specialization, bird conservation and disturbance: the role of wildfires. J. Anim. Ecol. 1 (2): 128–136. DOI: 10.1111/j.1365-2656.2010.01748.x

    Article  Google Scholar 

  • Crawley M.J. 2007. The R book. John Wiley & Sons, Chichester, 942 pp. ISBN: 978-0-470-51024-7

    Book  Google Scholar 

  • Devictor V., Julliard R., Clavel J., Jiguet F., Lee A. & Couvet D. 2008. Functional biotic homogenization of bird communities in disturbed landscapes. Global Ecol. Biogeogr. 1 (2): 252–261. DOI: 10.1111/j.1466-8238.2007.00364.x

    Article  Google Scholar 

  • Edenius L. & Elmberg J. 1996. Landscape level effects of modern forestry on bird communities in North Swedish boreal forests. Landscape Ecol. 1 (2): 325–338. DOI: 10.1007/BF02447520

    Article  Google Scholar 

  • Ellis E.C., Goldewijk K.K., Siebert S., Lightman D. & Ramankutty N. 2010. Anthropogenic transformation of the biomes. 1700 t. 2000. Glob. Ecol. Biogeogr. 1 (2): 589–606. DOI: 10.1111/j.1466-8238.2010.00540.x

    Google Scholar 

  • Elo M., Roberge J.M., Rajasarkka A. & Mönkkonen M. 2012. Energy density and its variation in space limit species richness of boreal forest birds. J. Biogeogr. 39 (8). 1462–1472. DOI: 10.1111/j.1365-2699.2012.02700.x

    Article  Google Scholar 

  • Filippi-Codaccioni O., Devictor V., Bas Y. & Julliard R. 2010. Toward more concern for specialisation and less for species diversity in conserving farmland biodiversity. Biol. Conserv. 143 (6). 1493–1500. DOI: 10.1016/j.biocon.2010.03.031

    Article  Google Scholar 

  • Futuyma D.J. & Moreno G. 1988. The evolution of ecological specialization. Ann. Rev. Ecol. Syst. 19: 207–233. DOI: 10.1146/annurev.es.19.110188.001231

    Article  Google Scholar 

  • Gaston K.J., Blackburn T.M. & Lawton J.H. 1997. Interspecific abundance-range size relationships: an appraisal of mechanisms. J. Anim. Ecol. 1 (2): 579–601. DOI: 10.2307/5951

    Article  Google Scholar 

  • Gaston K.J., Evans K.L. & Lennon J.J. 2007. The scaling of spatial turnover: pruning the thicket, pp. 181–222. In: Storch D., Brown J.H. & Marquet P.A. (eds). Scaling Biodiversity, Ser. Ecological Reviews, Cambridge University Press, Cambridge, 498 pp. ISBN-10. 0521876028, ISBN-13: 978-0521876025

    Google Scholar 

  • Godet L., Gaüzčre P., Jiguet F. & Devictor V. 2015. Dissociating several forms of commonness in birds sheds new light on biotic homogenization. Glob. Ecol. Biogeogr. 24: 416–426. DOI: 10.1111/geb.12266

    Article  Google Scholar 

  • Goncalves-Souza T., Romero G.Q. & Cottenie K. 2013. A critical analysis of the ubiquity of linear local-regional richness relationships. Oikos 1 (2): 961–966. DOI: 10.1111/j.1600-0706.2013.00305.x

    Article  Google Scholar 

  • Hawkins B.A., Diniz-Filho J.A.F., Bini L.M., De Marco P. & Blackburn T.M. 2007. Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 1 (2): 375–384. DOI: 10.1111/j.0906-7590.2007.05117.x

    Article  Google Scholar 

  • Honkanen M., Roberge J.M., Rajasarkka A. & Mönkkonen M. 2010. Disentangling the effects of area, energy and habitat heterogeneity on boreal forest bird species richness in protected areas. Glob. Ecol. Biogeogr. 1 (2): 61–71. DOI: 10.1111/j.1466-8238.2009.00491.x

    Article  Google Scholar 

  • Hurlbert A.H. 2004. Species-energy relationships and habitat complexity in bird communities. Ecol. Lett. 1 (2): 714–720. DOI: 10.1111/j.1461-0248.2004.00630.x

    Article  Google Scholar 

  • James F.C. & Wamer N.O. 1982. Relationships between temperate forest bird communities and vegetation structure. Ecology 1 (2): 159–171. DOI: 10.2307/1937041

    Article  Google Scholar 

  • Jobbagy E.G. & Jackson R.B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10: 423–436. DOI: https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  • Julliard R., Clavel J., Devictor V., Jiguet F. & Couvet D. 2006. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9 (11). 1237–1244. DOI: 10.1111/j.1461-0248.2006.00977.x

    Article  PubMed  Google Scholar 

  • Kampichler C., Angeler D.G., Holmes R.T., Leito A., Svensson S., van der Jeugd H.P. & Wesolowski T. 2014. Temporal dynamics of bird community composition: an analysis of baseline conditions from long-term data. Oecologia 175 (4). 1301–1313. DOI: 10.1007/s00442-014-2979-6

    Article  PubMed  Google Scholar 

  • Keil P., Schweiger O., Kühn I., Kunin W.E., Kuussaari M., Settele J., Henle K., Brotons L., Pe’er G., Lengyel S., Moustakas A., Steinicke H. & Storch D. 2012. Patterns of beta diversity in Europe: the role of climate, land cover and distance across scales. J. Biogeogr. 39 (8). 1473–1486. DOI: 10.1111/j.1365-2699.2012.02701.x

    Article  Google Scholar 

  • Koleček J., Albrecht T. & Reif J. 2014. Predictors of extinction risk of passerine birds in a Central European country. Anim. Conserv. 1 (2): 498–506. DOI: 10.1111/acv.12117

    Article  Google Scholar 

  • Koleček J., Paclík M., Weidinger K. & Reif J. 2010. Početnost a druhové bohatství ptáků ve dvou lužních lesích střední Moravy–možnosti analýzy bodových sčítacích dat [Abundance and species richness of birds in two lowland riverine forests in Central Moravia–possibilities for analysis of pointcount data]. Sylvia 46: 71–85.

    Google Scholar 

  • Korňan M. 2009. Structure of the breeding bird assemblage of a primeval alderswamp in the Šur National Nature Reserve. Biologia 1 (2): 165–179. DOI: 10.2478/s11756-009-0025-7

    Google Scholar 

  • Krištín A. & Harvančík S. 1992. K štruktúre a ekológii vtáctva na Vtáčniku. Rosalia 8: 223–232.

    Google Scholar 

  • Kropil R. 1996. Structure of the breeding bird assemblage of the fir-beech primeval forest in the West Carpathians (Badin nature reserve). Folia Zoologica 1 (2): 311–324.

    Google Scholar 

  • Kucbel S., Saniga M., Jaloviar P. & Vencurik J. 2012 Stand structure and temporal variability in old-growth beechdominated forests of the northwestern Carpathians: A 40-years perspective. For. Ecol. Manage. 264: 125–133. DOI: 10.1016/j.foreco.2011.10.011

    Article  Google Scholar 

  • Laiolo P. 2002. Effects of habitat structure, floral composition and diversity on a forest bird community in north-western Italy. Folia Zool. 1 (2): 121–128.

    Google Scholar 

  • Laiolo P., Rolando A. & Valsania V. 2004. Responses of birds to the natural reestablishment of wilderness in montane beechwoods of North-western Italy. Acta Oecol. 25 (1–2): 129–136. DOI: 10.1016/j.actao.2003.12.003

    Article  Google Scholar 

  • Legendre P. 2014. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23 (11). 1324–1334. DOI: 10.1111/geb.12207

    Article  Google Scholar 

  • Lemaitre J., Darveau M., Zhao Q. & Fortin D. 2012. Multiscale assessment of the influence of habitat structure and composition on bird assemblages in boreal forest. Biodiv. Conserv. 21 (13). 3355–3368. DOI: 10.1007/s10531-012-0366-3

    Article  Google Scholar 

  • Lešo P. & Kropil R. 2014. Breeding bird assemblages of three West Carpathian oak-beech natural forests (eastern Slovakia). Sylvia 50: 66–85.

    Google Scholar 

  • Le Viol I., Jiguet F., Brotons L., Herrando S., Lindström A., Pearce-Higgins J.W., Reif J., Van Turnhout C. & Devictor V. 2012. More and more generalists: two decades of changes in European avifauna. Biol. Lett. 1 (2): 780–782. DOI: 10.1098/rsbl.2012.0496

    Article  Google Scholar 

  • Lomolino M.V., Riddle B.R., Whittaker R.J. & Brown J.H. 2010. Biogeography, Fourth Edition. Sinauer Associates, Sunderland, 560 pp. ISBN: 978-0-87893-494-2

    Google Scholar 

  • Lukniš M. 1972. Slovensko 2. Priroda. Obzor, Bratislava, 920 pp. ISBN: 65-043-72-I

    Google Scholar 

  • Moning C. & Müller J. 2008. Environmental key factors and their thresholds for the avifauna of temperate montane forests. For. Ecol. Manage. 256 (5). 1198–1208. DOI: 10.1016/j.foreco.2008.06.018

    Article  Google Scholar 

  • Moning C. & Müller J. 2009. Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (Fagus sylvatica L.) dominated forests. Ecol. Indic. 1 (2): 922–932. DOI: 10.1016/j.ecolind.2008.11.002

    Article  Google Scholar 

  • Novotny V., Drozd P., Miller S.E., Kulfan M., Janda M., Basset Y. & Weiblen G.D. 2006. Why are there so many species of herbivorous insects in tropical rainforests. Science 313 (5790). 1115–1118. DOI: 10.1126/science.1129237

    Article  CAS  PubMed  Google Scholar 

  • Paillet Y., Bergès L., Hjältén J., Ódor P., Avon C., Berhnhardt-Römermann M., Bijlsma R-J., De Bruyn L., Furh M., Grandin U., Kanka R., Lundin L., Luque S., Magura T., Matesanz S., Mészáros I., Sebastia M.-T., Schmidt W., Standovár T., Tóthmérész B., Uotila A., Valladares F., Vellak K. & Virtanen R. 2010. Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conserv. Biol. 1 (2): 101–112. DOI: 0.1111/j.1523-1739.2009.01399.x.

    Article  Google Scholar 

  • Pokorný P. 2011. Neklidné časy. Kapitoly ze společných dějin přírody a lidí. Dokořán, Praha, 370 pp. ISBN: 978-80-7363-392-9

    Google Scholar 

  • Quinn G.P. & Keough M.J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, 553 pp. ISBN. 0521009766.9780521009768

    Book  Google Scholar 

  • R Development Core Tea. 2010 R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0. Available online at http://www.R-project.org/.

    Google Scholar 

  • Rangel T.F.L.V.B, Diniz-Filho J.A.F & Bini L.M. 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 1 (2): 46–50. DOI: 10.1111/j.1600-0587.2009.06299.x

    Article  Google Scholar 

  • Regnery B., Couvet D., Kubarek L., Julien J.F. & Kerbiriou C. 2013. Tree microhabitats as indicators of bird and bat communities in Mediterranean forests. Ecol. Indic. 34: 221–230. DOI: 10.1016/j.ecolind.2013.05.003

    Article  Google Scholar 

  • Reif J., Hořák D., Krištín A., Kopsová L. & Devictor V. 2015. Linking habitat specialization with species’ traits in European birds. Oikos: DOI: 10.1111/oik.02276

    Google Scholar 

  • Reif J., Marhoul P. & Koptík J. 2013. Bird communities in habitats along a successional gradient: Divergent patterns of species richness, specialization and threat. Basic Appl. Ecol. 1 (2): 423–431. DOI: 10.1016/j.baae.2013.05.007

    Article  Google Scholar 

  • Reif J., Storch D. & Šímová I. 2008. The effect of scale-dependent habitat gradients on the structure of bird assemblages in the Czech Republic. Acta Ornithol. 1 (2): 197–206. DOI: http://dx.doi.org/10.3161/000164508X395315

    Article  Google Scholar 

  • Ricklefs R.E. 2000. The relationship between local and regional species richness in birds of the Caribbean Basin. J. Anim. Ecol. 69 (6). 1111–1116. DOI: 10.1111/j.1365-2656.2000.00456.x

    Article  Google Scholar 

  • Šamonil P., Antolík L., Svoboda M. & Adam D. 2009. Dynamics of windthrow events in a natural fir-beech forest in the Carpathian mountains. For. Ecol. Manage. 257 (3). 1148–1156. DOI: 10.1016/j.foreco.2008.11.024

    Article  Google Scholar 

  • Šebková B., Šamonil P., Janík D., Adam D., Král K., Vrška T., Hort L. & Unar P. 2011. Spatial and volume patterns of an unmanaged submontane mixed forest in Central Europe: 160 years of spontaneous dynamics. For. Ecol. Manage. 1 (2): 873–885. DOI: 10.1016/j.foreco.2011.05.028

    Article  Google Scholar 

  • Seidling W., Travaglini D., Meyer P., Waldner P., Fischer R., Granke O., Chirici G. & Corona P. 2014. Dead wood and stand structure–relationships for forest plots across Europe. iForest 7: 269–281. DOI: 10.3832/ifor1057-007

    Article  Google Scholar 

  • Srivastava D.S. & Lawton J.H. 1998. Why more productive sites have more species: An experimental test of theory using tree-hole communities. Am. Nat. 1 (2): 510–529. DOI: 10.1086/286187

    Article  Google Scholar 

  • Stein A., Gerstner K. & Kreft H. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 1 (2): 866–880. DOI: 10.1111/ele.12277

    Article  Google Scholar 

  • Webb C.T., Hoeting J.A., Ames G.M., Pyne M.I. & Poff N.L. 2010. A structured and dynamic framework to advance traitsbased theory and prediction in ecology. Ecol. Lett. 1 (2): 267–283. DOI: 10.1111/j.1461-0248.2010.01444.x

    Article  Google Scholar 

  • Wesolowski T. 2012. “Lifespan” of non-excavated holes in a primeval temperate forest: A 30 year study. Biol. Conserv. 153: 118–126. DOI: 10.1016/j.biocon.2012.04.017

    Article  Google Scholar 

  • Whittaker R.H. 1972. Evolution and measurement of species diversity. Taxon 21 (2/3): 213–251. DOI: 10.2307/1218190

    Article  Google Scholar 

  • Willson M.F. & Comet T.A. 1996. Bird communities of northern forests: ecological correlates of diversity and abundance in the understory. Condor 1 (2): 350–362. DOI: 10.2307/1369153

    Article  Google Scholar 

  • Yee D.A. & Juliano S. A. 2007. Abundance matters: a field experiment testing the more individuals hypothesis for richnessproductivity relationships. Oecologia 1 (2): 153–162. DOI: 10.1007/s00442-007-0707-1

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Ferenc and an anonymous referee for constructive comments to earlier drafts of this study. J. Vrba kindly drew the map of our study area. The study was supported by the Czech Science Foundation (grant no 14-21715S to JR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Reif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birčák, T., Reif, J. The effects of tree age and tree species composition on bird species richness in a Central European montane forest. Biologia 70, 1528–1536 (2015). https://doi.org/10.1515/biolog-2015-0171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0171

Key words

Navigation