Skip to main content

Advertisement

Log in

Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Agriculture is an important livelihood activity in the Himalayan regions. Our previous studies revealed the presence of diverse diazotrophic assemblage in indigenous red kidney bean (RKB) rhizospheric soil from two different locations of Western Indian Himalaya, namely S1 (Chhiplakot, 30.70° N/80.30° E) and S2 (Munsyari, 30.60° N/80.20° E), selected on the basis of real-time PCR analysis. In this study, two 16S rRNA gene clone libraries (SB1 and SB2, respectively) were constructed using the same rhizospheric soil samples for assessing the total bacterial diversity and their community structure. A total of 760 clones were obtained, with ≈54–59% of these sequences belonging to the phylum Proteobacteria. While sequences belonging to Bacteroidetes, Chloroflexi, Acidobactria, Planctomycetes, Firmicutes, Nitrospira, Gemmatimonadetes, Cyanobacteria, Verrucomicrobia, OD1, OP11 and Actinobacteria were encountered in both the soils, sequences belonging to bacteria from the classes Chlorobi and BRC1 were only detected in the S1 soil. Both the libraries showed similar bacterial community compositions, with Pseudomonas (≈33–34%) as predominant genus. Phylogenetic analysis revealed that all the clone sequences were clustered in different bacterial groups as per their resemblance with their respective phylogenetic neighbours. Major clusters were formed by Gammapreoteobacteria followed by Bacteroidetes and Alphapro-teobacteria. A good fraction of the clone sequences has no resemblance with existing groups, thereby suggesting the need of culture-dependent studies from Himalayan regions. To the best of our knowledge, this study is the first major metagenomic effort on Himalayan RKBs rhizobacteria revealing fundamental information that needs to be explored for functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DOTUR:

distance-based OTU and richness

OTU:

operational taxonomic units

PAST:

paleontological statistics

qPCR:

real-time PCR

R:

recombination

RKB:

red kidney bean

rRNA:

ribosomal RNA

TOC:

total organic carbon

WIH:

Western Indian Himalaya

References

  • Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2013. GenBank. Nucleic Acids Res. 41: D36–D42.

    Article  CAS  Google Scholar 

  • Cetecioglu Z., Ince B.K., Kolukirik M. & Ince O. 2009. Biogeo-graphical distribution and diversity of bacterial and archaeal communities within highly polluted anoxic marine sediments from the Marmara Sea. Mar. Pollut. Bull. 3: 384–395.

    Article  Google Scholar 

  • Davidson E.A. & Janssens I.A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–173.

    Article  CAS  Google Scholar 

  • Deangelis K.M. & Firestone M.K. 2012. Phylogenetic clustering of soil microbial communities by 16S rRNA but not 16S rRNA genes. Appl. Environ. Microbiol. 78: 2459–2461.

    Article  CAS  Google Scholar 

  • Diaz-Alcantara C.A., Ramirez-Bahena M.H., Mulas D., Garcia-Fraile P., Gomez-Moriano A., Peix A., Velazquez E. & Gonzalez-Andres F. 2013. Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe. Syst. Appl. Microbiol. 37: 149–56.

    Article  Google Scholar 

  • Jobbagy E.G. & Jackson R.B. 2000. The vertical distribution of soil carbon and its relation to climate and vegetation. Ecol. Appl. 10: 423–436.

    Article  Google Scholar 

  • Jorquera M.A., Shaharoona B., Nadeem S.M., de la Luz M.M. & Crowley D.E. 2012. Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb. Ecol. 64: 1008–1017.

    Article  Google Scholar 

  • Kumar S., Suyal D.C., Dhauni N., Bhoriyal M. & Goel R. 2014. Relative plant growth promoting potential of Himalayan psy-chrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum L., Vigna mungo (L.) Hepper; Vigna radi-ata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.)Gaertn. Afr. J. Microbiol. 8: 3931–3943.

    Google Scholar 

  • La Sorte F.A. & Jetz W. 2010. Avian distributions under climate change: towards improved projections. J. Exp. Biol. 213: 862–869.

    Article  Google Scholar 

  • Li P., Wang Q., Endo T., Zhao X. & Kakubari Y. 2010. Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests. Geoderma 154: 407–415.

    Article  CAS  Google Scholar 

  • Liu Y., Yao T., Jiao N., Kang S., Xu B., Zeng Y., Huang S. & Liu X. 2009. Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles 13: 411–423.

    Article  CAS  Google Scholar 

  • Magurran A.E. 2004. Measuring biological diversity. Blackwell Publishing, Oxford, 264 pp.

    Google Scholar 

  • Philippot L., Raaijmakers J.M., Lemanceau P. & van der Putten W.H. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11: 789–799.

    Article  CAS  Google Scholar 

  • Pradhan S., Srinivas T.N.R., Pindi P.K., Kishore K.H., Begum Z., Singh P.K., Singh A.K., Pratibha M.S., Yasala A.K., Reddy G.S. & Shivaji S. 2010. Bacterial biodiversity from Roopkund glacier, Himalayan mountain ranges, India. Extremophiles 14: 377–395.

    Article  CAS  Google Scholar 

  • Prema Latha K., Soni R., Khan M., Marla S.S. & Goel R. 2009. Exploration of csp gene(s) from temperate and glacier soils of Indian Himalaya and in silico analysis of encoding proteins. Curr. Microbiol. 58: 343–348.

    Article  Google Scholar 

  • Sanchez A.C., Gutierrez R.T., Santana R.C., Urrutia A.B., Fauvart M., Michiels J. & Vanderleyden J. 2014. Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. Eur. J. Soil Biol. 62: 105–112.

    Article  Google Scholar 

  • Schmidt S.K., Nemergut D.R., Miller A.E., Freeman K.R., King A.J. & Seimon A. 2009. Microbial activity and diversity during extreme freezethaw cycles in pre glacial soils, 5400 m elevation, Cordillera Vilcanota, Peru. Extremophiles 13: 807–816.

    Article  CAS  Google Scholar 

  • Schulp C.J.E., Nabuurs G.J., Verburg P.H. & de Waal R.W. 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecol. Manag. 256: 482–490.

    Article  Google Scholar 

  • Shannon C. 1948. A mathematical theory of communication. Bell. Syst. Tech. J. 27: 379–423.

    Article  Google Scholar 

  • Shivaji S., Pratibha M.S., Sailaja B., Kishore K.H., Singh A.K., Begum Z. Anarasi U., Prabagaran S.R., Reddy G.S.N. & Srinivas T.N.R. 2011. Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15: 1–22.

    Article  CAS  Google Scholar 

  • Simpson E.H. 1949. Measurement of diversity. Nature 163: 688.

    Article  Google Scholar 

  • Singh P., Singh S.S., Elster J. & Mishra A.K. 2013. Molecular phylogeny, population genetics, and evolution of heterocystous Cyanobacteria using nifH gene sequences. Protoplasma 250: 751–64.

    Article  Google Scholar 

  • Soni R., Kumari S., Zaidi M.G.H., Shouche Y.S. & Goel R. 2008. Practical applications of rhizospheric bacteria in biodegradation of polymers from plastic wastes, pp 235–243. In: Ahmad I., Pichtel J. & Hayat S. (eds) Plant-Bacteria Interactions. Strategies and Techniques to Promote Plant Growth. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim.

    Chapter  Google Scholar 

  • Soni R., Saluja B. & Goel R. 2010. Bacterial community analysis using temporal temperature gradient gel electrophoresis (TTGE) of 16S rDNA PCR products of soil metagenome. Ekologija 56: 94–98.

    Article  CAS  Google Scholar 

  • Surakasi V.P., Antony C.P., Sharma S., Patole M.S. & Shouche Y.S. 2010. Temporal bacterial diversity and detection of putative methanotrophs in surface mats of Lonar crater lake. J. Basic Microbiol. 50: 465–474.

    Article  CAS  Google Scholar 

  • Suyal D.C., Shukla A. & Goel R. 2014a. Growth promotory potential of the psychrophilic diazotroph Pseudmonas migulae S10724 against native Vigna radiata (L.) Wilczek. 3 Biotech 4: 665–668.

    Article  Google Scholar 

  • Suyal D.C., Yadav A., Shouche Y. & Goel R. 2014b. Diazotrophic diversity in the rhizosphere of western Indian Himalayan red kidney beans (Phaseolus vulgaris L.). 3 Biotech DOI 10.1007/s13205-014-0238-5.

    Google Scholar 

  • Suyal D.C., Yadav A., Shouche Y. & Goel R. 2014c. Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr. Microbiol. 68: 543–550.

    Article  CAS  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.

    Article  CAS  Google Scholar 

  • Wagner D., Kobabe S. & Liebner S. 2009. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia. Can. J. Microbiol. 55: 77–83.

    Article  Google Scholar 

  • Yang L., Luo T. & Wu S. 2005. Root biomass and underground C and N storage of primitive Korean pine and broad-leaved Climax forest in Changbai mountains at its different succession stages. Chinese J. Appl. Ecol. 16: 1195–1199.

    CAS  Google Scholar 

  • Yoo K., Armundson R., Heimsath A.M. & Dietrich W.E. 2006. Spatial patterns of soil organic carbon on hillslopes: integrating geomorphic processes and the biological C cycle. Geoderma 130: 47–65.

    Article  CAS  Google Scholar 

  • Zhang X., Yao T., Tian L., Xu S. & An L. 2008. Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microbiol. Ecol. 55: 476–488.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Bureau of Agriculturally Important Microorganisms (NBAIM)/Indian Council of Agricultural Research (ICAR), grant to RG. First author (DCS) acknowledges ICAR, Research Fellowship during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeta Goel.

Supplementary material

11756_2015_7003305_MOESM2_ESM.pdf

Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suyal, D.C., Yadav, A., Shouche, Y. et al. Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70, 305–313 (2015). https://doi.org/10.1515/biolog-2015-0048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0048

Key words

Navigation