Skip to main content

Advertisement

Log in

The effect of the invasive Asclepias syriaca on the ground-dwelling arthropod fauna

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The management of natural and seminatural systems often leads to disturbance associated with the appearance of non-native species. The spread of these species is increasing due to global environmental changes combined with local management interventions. These non-native species may establish self-sustaining populations influencing ecosystem functions, including the habitat use of native species. Here we explore the response of diplopods, spider and ant assemblages and the activity-density of individual species to the establishment of the non-native plant species, Asclepias syriaca in a disturbed poplar forest in Hungary. The relationship between the species richness of spiders and ants and the structural features of A. syriaca was weak. We found a significant relationship between the structural features of A. syriaca stands and the density and activity of the diplopod Megaphyllum unilineatum. We explain this relationship by the modified microclimate and litter quality of the habitats invaded by A. syriaca. The species composition of ant and spider assemblages was sensitive to A. syriaca. Asclepias syriaca had a negative local effect on the abundance of two spider species which were common in the studied forest. However, A. syriaca positively influenced the abundance of two ant species, most probably via indirect trophic relationships, as they feed on aphids living on A. syriaca. Our study shows that invasive plants can have mixed effects on local invertebrate assemblages. It is therefore crucial to understand how native assemblages respond to these changes in order to better manage these novel ecosystems and maximize their biodiversity benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdala-Roberts L., Agrawal A.A. & Mooney K.A. 2012. Ant — aphid interactions on Asclepias syriaca are mediated by plant genotype and caterpillar damage. Oikos 121 (11): 1905–1913. DOI: 10.1111/j.1600-0706.2012.20600.x

    Google Scholar 

  • Alvarado M. 2000. Habitat correlates of ant assemblages in different forests of the South Pannonian Plain. Tiscia 32: 35–42.

    Google Scholar 

  • Andersen A.N. 1991a. Sampling communities of ground-foraging ants: Pitfall catches compared with quadrat counts in an Australian tropical savanna. Aust. J. Ecol. 16 (3): 273–279. DOI: 10.1111/j. 1442-9993.1991.tb01054.x

    Google Scholar 

  • Andersen M. 1991b. An ant-aphid interaction: Formica fusca, and Aphthargelia symphoricarpi on Mount St. Helens. Am. Midl. Nat. 125 (1): 29–36.

    Google Scholar 

  • Arnan X., Gracia M., Comas L. & Retana J. 2009. Forest management conditioning ground ant community structure and composition in temperate conifer forests in the Pyrenees Mountains. Forest Ecol. Manag. 258 (2): 51–59. DOI: 10.1016/j.foreco.2009.03.029

    Google Scholar 

  • Bagi I. 2008. Common milkweed Asclepias syriaca L., pp. 151–159. In: Botta-Dukat Z. & Balogh L. (eds), The Most Important Invasive Plants in Hungary, Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót, 255 pp. ISBN: 9638391421, 9789638391421

    Google Scholar 

  • Balogh L., Dancza I. & Király G. 2007. Preliminary report on the grid-based mapping of invasive plants in Hungary. In: Rabitsch W., Essl F. & Klingenstein F. (eds), Biological Invasions — from Ecology to Conservation. Neobiota 7: 105–114.

    Google Scholar 

  • Borgelt A. & New T.R. 2006. Pitfall trapping for ants (Hy-menoptera, Formicidae) in mesic Australia: what is the best trapping period? J. Insect Conserv. 10 (1): 75–77. DOI: 10.1007/sl0841-005-7549-0

    Google Scholar 

  • Branquart E., Kime R.D., Dufrene M., Tavernier J. & Wauhty G. 1995. Macroarthropod — habitat relationships in oak forest in South Belgium. Pedobiologia 39 (3): 243–263.

    Google Scholar 

  • Buchar J. & Ruzicka V. 2002. Catalogue of Spiders of the Czech Republic. Peres Publishers, Praha, Czech Republic, 352 pp. ISBN: 80-86-360-25-3

    Google Scholar 

  • Bultman T.L. & DeWitt D.J. 2008. Effect of an invasive ground-cover plant on the abundance and diversity of a forest floor spider assemblage. Biol. Invas. 10 (5): 749–756. DOI: 10.1007/sl0530-007-9168-z

    Google Scholar 

  • Cerda X., Arnan X. & Retana J. 2013. Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology. Myrmecol. News 18: 131–147.

    Google Scholar 

  • Chien S.A. & Morse D.H. 1998. The role of prey and flower quality in the choice of hunting sites by adult male crab spiders Misumena vatia Araneae, Thomisidae. J. Arachnol. 26: 238–243.

    Google Scholar 

  • Csontos P., Bózsing E., Cseresnyés I. & Penksza K.2009. Reproductive potential of the alien species Asclepias syriaca Asclepiadaceae in the rural landscape. Pol. J. Ecol. 57 (2): 383–388.

    Google Scholar 

  • Crawley M.J. 2007. Mixed-Effects Models, pp. 627–685. In: The R Book, Wiley, New York, 1076 pp. ISBN: 978-0-470-97392-9

    Google Scholar 

  • David J.F. & Handal. T. 2010. The ecology of saprophagous macroarthropods millipedes, woodlice in the context of global change. Biol. Rev. Camb. Philos. Soc. 85 (4): 881–895. DOI: 10.1111/j.1469-185X.2010.00138.x.

    PubMed  Google Scholar 

  • Entling W., Schmidt M.H., Bacher S., Brandland R. & Nen-twig W. 2007. Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Global Ecol. Biogeogr. 16 (4): 440–448. DOI: 10.1111/j. 1466-8238.2006.00305.x

    Google Scholar 

  • Ernst C.M. & Cappuccino N. 2005. The effect of an invasive alien vine, Vincetoxicum, rossicum, Asclepiadaceae, on arthropod populations in Ontario old fields. Biol. Invas. 7 (3): 417–425. DOI: 10.1007/sl0530-004-4062-4

    Google Scholar 

  • Foelix R. 2010. Biology of Spiders. 3rd ed. Oxford University Press, USA, 432 pp. ISBN-13: 978-0199734825, ISBN-10: 0199734828

    Google Scholar 

  • Gallé L. 1978. Data on the ecological energetics of Formica pratensis Retz. (Hymenoptera: Formicidae) in the psammophile ecosystems of the Southern Hungarian Plain. Acta Biol. Szeged. 24 (1/4): 97–104.

    Google Scholar 

  • Gallé L., Körmöczi L., Hornung E. & Kerekes J. 1998. Structure of ant assemblages in a middle-European successional sanddune area. Tiscia 31: 19–28.

    Google Scholar 

  • Gallé R. & Torma A. 2009. Epigeic spider (Araneae) assemblages of natural forest edges in the Kiskunság Hungary. Commun. Ecol. 10 (2): 146–151. DOI: 10.1556/ComEc. 10.2009.2.2

    Google Scholar 

  • Gallé R., Torma A. & Körmöczi L. 2010. Small-scale effect of habitat heterogeneity on invertebrate assemblages in Hungarian sandy grasslands. Pol. J. Ecol. 58 (2): 333–346.

    Google Scholar 

  • Gerlach A., Russell D.J., Römbke J. & Brüggemann W. 2012. Consumption of introduced oak litter by native decomposers Glomeridae, Diplopoda. Soil Biol. Biochem. 44 (1): 26–30. DOI: 10.1016/j.soilbio.2011.09.006

    CAS  Google Scholar 

  • Gibb H.2011. Experimental evidence for mediation of competition by habitat succession. Ecology 92 (10): 1871–1878. DOI: http://dx.doi.Org/10.1890/10-2363.1

    CAS  PubMed  Google Scholar 

  • Gibson C.W.D., Hambler C. & Brown V.K. 1992. Changes in spider (Araneae) assemblages in relation to succession and grazing management. J. Appl. Ecol. 29 (1): 132–142.

    Google Scholar 

  • Gordon D.R. 1998. Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol. Appl. 8 (4): 975–989. DOI: http://dx.doi.org/10.1890/1051-0761(1998)008[0975:EOINIP]2.0.CO;2

    Google Scholar 

  • Gratton C. & Denno R.F. 2005. Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restor. Ecol. 13 (2): 358–372. DOI: 10.1111/j. 1526- 100X.2005.00045.x

    Google Scholar 

  • Haacker U. 1968. Deskriptive, experimentelle und vergleichende Untersuchungen zur Autökologie rhein-mainischer Diplopoden. Oecologia 1 (1–2): 87–129. DOI: 10.1007/BF00377255

    PubMed  Google Scholar 

  • Hejda M., Pysek P., Pergl J., Sadlo J., Chytry M. & Jarosik V. 2009. Invasion success of alien plants: do habitat affinities in the native distribution range matter? Global Ecol. Biogeogr. 18 (3): 372–382. DOI: 10.1111/j.1466-8238.2009.00445.x

    Google Scholar 

  • Herrera A.M. & Dudley T.L. 2003. Reduction of riparian arthropod abundance and diversity as a consequence of giant reed Arundo donax invasion. Biol. Invas. 5 (3): 167–177. DOI: 10.1023/A: 1026190115521

    Google Scholar 

  • Hobbs R.J., Arico S., Aronson J., Baron J.S., Bridgewater P., Cramer V.A., Epstein P.R., Ewel J. J., Klink C.A., Lugo A.E., Norton D., Ojima D., Richardson D.M., Sanderson E.W., Val-ladares F., Vilà M., Zamora R. & Zobel M. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol. Biogeogr. 15 (1): 1–7. DOI: 10.1111/j.1466-822X.2006.00212.x

    Google Scholar 

  • Hobbs R.J., Higgs E. & Harris J.A. 2009. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24 (11): 599–605. DOI: 10.1016/j.tree.2009.05.012

    PubMed  Google Scholar 

  • Hölldobler B. & Wilson E.O. 1990. The Ants. Cambridge University Press, Cambridge, 732 pp. ISBN: 0674040759, 9780674040755

    Google Scholar 

  • Honek A. 1988. The effect of crop density and microclimate on pitfall trap catches of Carabidae, Staphylinidae (Coleoptera), and Lycosidae (Araneae) in cereal fields. Pedobiologia 32 (3–4): 233–242.

    Google Scholar 

  • Hornung E. & Vajda Z. 1988. Age determination of Megaphyllum, unilineatum C. L. Koch 1838. Diplopoda: Julidae. Acta Biol. Szeged. 34: 173–176.

    Google Scholar 

  • Jeanneret P., Schupbach B. & Luka H. 2003. Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agric. Ecosyst. Environ. 98 (1–3): 311–320. DOI: 10.1016/S0167-8809(03)00091-4

    Google Scholar 

  • Jimenez-Valverde A. & Lobo J.M. 2007. Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol. Entomol. 32 (1): 113–122. DOI: 10.1111/j.1365-2311.2006.00848.x

    Google Scholar 

  • Korsós Z. 1991. Abundance and seasonal activity of millipedes in a dolomitic grassland community (Diplopoda), pp. 239–244. In: Merkl O. (ed.), Annales historico-naturales Musei nationalis hungarici, Tomus 83, Magyar Természettudományi Múzeum, Budapest.

    Google Scholar 

  • Langellotto G.A. & Denno R.F. 2004. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139 (1): 1–10. DOI: 10.1007/s00442-004-1497-3

    Google Scholar 

  • Lawton J.H. 1983. Plant architecture and the diversity of phytophagous insects. Annu. Rev. Entomol. 28: 23–39. DOI: 10.1146/annurev.en.28.010183.000323

    Google Scholar 

  • Lessard J.P., Dunn R.R. & Sanders N.J. 2009. Temperature-mediated coexistence in temperate forest ant communities. Insect. Soc. 56 (2): 149–56. DOI: 10.1007/s00040-009-0006-4

    Google Scholar 

  • Loksa I. 1966. Die bodenzoozönologischen Verhältnisse der Flaumeichen-Buschwälder Südostmitteleuropas. Monographic der Flaumeichen-Buschwälder II. Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 437 pp.

    Google Scholar 

  • Malumbres-Olarte J., Vink C.J., Ross J.G., Cruickshank R.H. & Paterson A.M. 2012. The role of habitat complexity on spider communities in native alpine grasslands of New Zealand. Insect Conserv. Divers. 6 (2): 124–134. DOI: 10.1111/j.1752-4598.2012.00195.x

    Google Scholar 

  • Martius C, Höfer H., Garcia M.V.B., Römbke J., Forster B. & Hanagarth W. 2004. Microclimate in agroforestry systems in central Amazonia: does canopy closure matter to soil organisms? Agroforest. Syst. 60 (3): 291–304. DOI: 10.1023/B:AGFO.0000024419.20709.6c

    Google Scholar 

  • Melbourne B.A. 1999. Bias in the effect of habitat structure on pitfall traps: an experimental evaluation. Aust. J. Ecol. 24 (3): 228–239. DOI: 10.1046/j. 1442-9993.1999.00967.x

    Google Scholar 

  • Molnár N., Harkai A. & Setényi R. 2010. Spatial patterns of Aphis gossypii Sternorrhyncha: Aphididae populations feeding on milkweed Asclepias syriaca. Acta Phytopathol. Entomol. Hung. 45 (1): 71–80. DOI: 10.1556/APhyt.45.2010.1.4

    Google Scholar 

  • O’Hara R.B. & Kotze D.J. 2010. Do not log-transform count data. Methods Ecol. Evol. 1 (2): 118–122. DOI: 10.1111/j.2041-210X.2010.00021.X

    Google Scholar 

  • Öberg S., Ekbom B. & Bommarco R. 2007. Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. Agric. Ecosyst. Environ. 122 (2): 211–219. DOI: 10.1016/j.agee.2006.12.034

    Google Scholar 

  • Oksanen J., Blanchet G.F., Kindt R., Legendre P., O’Hara B., Simpson G.L., Solymos P., Stevens M.H.M. & Wagner H. 2011. Vegan: Community Ecology Package. R package version 1.17-11. http://CRAN.R-project.org/package=veganpackage=vegan, (accessed 26.08. 2013.)

    Google Scholar 

  • Paillet Y., Bergès L., Hjältén J., Ódor P., Avon C, Bernhardt-Römermann M., Bijlsma R.J., De Bruyn L., Fuhr M., Grandin U., Kanka R., Lundin L., Luque S., Magura T., Matesanz S., Mészáros I., Sebastiàn M.T., Schmidt W., Standovár T., Tóthmérész B., Uotila A., Valladares F., Vellak K. & Virtanen R. 2010. Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conserv. Biol. 24 (1): 101–112. DOI: 10.1111/j.1523-1739.2009.01399.x.

    PubMed  Google Scholar 

  • Pearson D.A. 2009. Invasive plant architecture alters trophic interactions by changing predator abundance and behaviour. Oecologia 159 (3): 549–558. DOI: 10.1007/s00442-008-1241-5

    PubMed  Google Scholar 

  • Petillon J., Georges A., Canarda A., Lefeuvrec J.C., Bakkerd J.P. & Ysnel F. 2008. Influence of abiotic factors on spider and ground beetle communities in different saltmarsh systems. Basic Appl. Ecol. 9 (6): 743–751. DOI: 10.1016/j.baae.2007.08.007

    Google Scholar 

  • Pétillon J., Ysnel F., Canard A. & Lefeuvre J.C. 2005. Impact of an invasive plant Elymusathericuson the conservation value of tidal salt marshes in western France and implications for management: Responses of spider populations. Biol. Conserv. 126 (1): 103–117. DOI: 10.1016/j.biocon.2005.05.003

    Google Scholar 

  • R Development Core Team 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/.

    Google Scholar 

  • Renault C.K., Buffa L.M. & Delfino M.A. 2005. An aphid-ant interaction: effects on different trophic levels. Ecol. Res. 20 (1): 71–74. DOI: 10.1007/s11284-004-0015-8

    Google Scholar 

  • Ricciardi A., Hoopes M.F., Marchetti M.P. & Lockwood J.L. 2013. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83 (3): 263–282. DOI: http://dx.doi.org/10.1890/13-0183.1

    Google Scholar 

  • Rypstra A.L., Carter P.E., Balfour R.A. & Marshall S.D. 1999. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27: 371–377.

    Google Scholar 

  • Samways M.J., Caldwell P.M. & Osborn R. 1996. Groundliving invertebrate assemblages in native, planted and invasive vegetation in South Africa. Agric. Ecosys. Environ. 59 (1): 19–32. DOI: 10.1016/0167-8809(96)01047-X

    Google Scholar 

  • Savolainen R. & Vepsalainen K. 1988. A competition hierarchy among boreal ants–impact on resource partitioning and community structure. Oikos 51 (2): 135–155.

    Google Scholar 

  • Scheidler M. 1990. Influence of habitat structure and vegetation architecture on spiders. Zool. Anz. 225 (5/6): 333–340.

    Google Scholar 

  • Schirmel J. & Buchholz S. 2013. Invasive moss alters patterns in life-history traits and functional diversity of spiders and carabids. Biol. Invas. 15 (5): 1089–1100. DOI: 10.1007/s10530-012-0352-4

    Google Scholar 

  • Schirmel J., Timler L. & Buchholz S. 2011. Impact of the invasive moss Campylopus introflexus on carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) in acidic coastal dunes at the southern Baltic Sea. Biol. Invas. 13 (3): 605–620. DOI: 10.1007/s10530-010-9852-2

    Google Scholar 

  • Schlick-Steiner B.C., Steiner F.M., Moder K., Bruckner A., Fiedler K. & Christian E. 2006. Assessing ant assemblages: pitfall trapping versus nest counting (Hymenoptera, Formicidae). Insect. Soc. 53 (3): 274–281. DOI: 10.1007/s00040-006-0869-6

    Google Scholar 

  • Schmidt M.H., Roschewitz I., Thies C. & Tscharntke T. 2005. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 42 (2): 281–287. DOI: 10.1111/j.1365-2664.2005.01014.x

    Google Scholar 

  • Siemann E. 1998. Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79 (6): 2057–2070. DOI: https://doi.org/10.1890/0012-9658(1998)079[2057:ETOEOP]2.0.CO;2

    Google Scholar 

  • Simberloff D. 2011. How common are invasion-induced ecosystem impacts? Biol. Invas. 13 (5): 1255–1268. DOI: 10.1007/s10 530-011-9956-3

    Google Scholar 

  • Smith J., Chapman A. & Eggleton P. 2006. Baseline biodiversity surveys of the soil macrofauna of London’s green spaces. Urban Ecosyst. 9 (4): 337–349. DOI: 10.1007/s11252-006-0001-8

    Google Scholar 

  • Smith R.A., Mooney K.A. & Agrawal A.A. 2008. Coexistence of three specialist aphids on common milkweed, Asclepias syriaca. Ecology 89 (8): 2187–2196. PMID: 18724729

    CAS  PubMed  Google Scholar 

  • Slobodchikoff C.N. & Doven J.T. 1977. Effects of Ammophila arenaria on sand dune arthropod communities. Ecology 58 (5): 1171–1175. DOI: http://dx.doi.org/10.2307/1936939

    Google Scholar 

  • Southwood T.R.E., Brownand V.K. & Reader P.M. 1979. The relationships of plant and insect diversities in succession. Biol. J. Linn. Soc. 12 (4): 327–348. DOI: 10.1111/j.1095-8312.1979.tb00063.x

    Google Scholar 

  • Standish R.J. 2004. Impact of an invasive clonal herb on epigaeic invertebrates in forest remnants in New Zealand. Biol. Conserv. 116 (1): 49–58. DOI: 10.1016/S0006-3207(03)00172-1

    Google Scholar 

  • Stadler B. & Dixon A.F. 2005. Ecology and evolution of aphidant interactions. Annu Rev. Ecol. Evol. Syst. 36: 345–372. DOI: 10.1146/annurev.ecolsys.36.091704.175531

    Google Scholar 

  • Stasiov S. 2009. Millipede Diplopoda communities in mixed oak–hornbeam forest stands–effect of selected site factors. Pol. J. Ecol. 57 (4): 785–792.

    Google Scholar 

  • Stine R.A. 1995. Graphical interpretation of variance inflation factors. The American Statistician 49 (1): 53–56. DOI: 10.1080/00031305.1995.10476113

    Google Scholar 

  • Strong D.R., Lawton J.H. & Southwood R. 1984. Insects on Plants. Harvard University Press, Cambridge, 313 pp. ISBN-10: 0674455134, ISBN-13: 978-0674455139

    Google Scholar 

  • Styrsky J.D. & Eubanks M.D. 2007. Ecological consequences of interactions between ants and honeydew-producing insects. Proc. Biol. Sci. 274 (1607): 151–164. DOI: 10.1098/rspb.2006.3701

    PubMed  Google Scholar 

  • Toft R.J., Harris R.J. & Williams P.A. 2001. Impacts of the weed Tradescantia fluminensis on insect communities in fragmented forests in New Zealand. Biol. Conserv. 102 (1): 31–46. DOI: 10.1016/S0006-3207(01)00091-X

    Google Scholar 

  • Topping C.J. & Sunderland K.D. 1992. Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. J. Appl. Ecol. 29 (2): 485–491.

    Google Scholar 

  • Török K., Botta-Dukat Z., Dancza I., Németh I., Kiss J., Mihaly B. & Magyar D. 2003a. Invasion gateways and corridors in the Carpathian basin: biological invasions in Hungary. Biol. Invas. 5 (4): 349–356. DOI: 10.1023/B:BINV.0000005570. 19429.73

    Google Scholar 

  • Török K., Halassy M. & Szabó R. 2003b. Restoration strategy for endemic grasslands in a low productive region of Hungary, pp. 1132–1138. In: Allsopp N., Palmer A.R., Milton S.J., Kirkman.P., Kerley G.I.H., Hurt C.R. & Brown C.J. (eds), Proceedings of the VIIth International Rangelands Congress, 26th July–1st August 2003, Durban, South Africa, ISBN: 0-958-45348-9

    Google Scholar 

  • Vanbergen A.J., Woodcock B.A., Watt A.D. & Niemela J. 2005. Effect of land-use heterogeneity on carabid communities at the landscape scale. Ecography 28 (1): 3–16. DOI: 10.1111/j.0906-7590.2005.03991.x

    Google Scholar 

  • Vilà M., Espinar J.L., Hejda M., Hulme P.E., Jarošík V., Maron J.L., Pergl J., Schaffner U., Sun Y. & Pyšek P. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14 (7): 702–708. DOI: 10.1111/j.1461-0248.2011.01628.x

    PubMed  Google Scholar 

  • Vitousek P.M., D’Antonio C.M., Loope L.L., Rejmanek M. & Westbrooks R. 1997. Introduced species: a significant component of human-caused global change. N. Z. J. Ecol. 21 (1): 1–16.

    Google Scholar 

  • Voigtländer K. 2011. Preferences of common Central European millipedes for different biotope types Myriapoda, Diplopoda in Saxony-Anhalt Germany. Int. J. Myriapod. 6: 61–83. DOI: http://dx.doi.org/10.3897/ijm.6.2172

    Google Scholar 

  • Wang C., Strazanac J. S. & Butler L. 2001. Association between ants Hymenoptera: Formicidae and habitat characteristics in oak-dominated mixed forests. Environ. Entomol. 30 (5): 842–848. DOI: 10.1603/0046-225X-30.5.842

    Google Scholar 

  • Wilkie L., Cassis G. & Gray M. 2007. The effects on terrestrial arthropod communities of invasion of a coastal heath ecosystem by the exotic weed bitou bush Chrysanthemoides monilifera ssp. rotundata L. Biol. Invas. 9 (4): 477–498. DOI: 10.1007/s10530-006-9055-z

    Google Scholar 

  • Wise D.H. 1993. Spiders in Ecological Webs. University Press, Cambridge, 347 pp. ISBN: 0-521-32547-1

    Google Scholar 

Download references

Acknowledgements

We wish to thank Tibor Hartel and László Gallé for reading the early version of the manuscript and contributing with valuable comments. We also thank Tünde Csorba and Tamás Somogyi for their help in sorting the collected material. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbert Gallé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallé, R., Erdélyi, N., Szpisjak, N. et al. The effect of the invasive Asclepias syriaca on the ground-dwelling arthropod fauna. Biologia 70, 104–111 (2015). https://doi.org/10.1515/biolog-2015-0011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0011

Key words

Navigation