Skip to main content
Log in

Alzheimer’s Disease and Aging Association: Identification and Validation of Related Genes

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

Aging is considered a key risk factor for Alzheimer’s disease (AD). This study aimed to identify and validate potential aging-related genes associated with AD using bioinformatics analysis.

Methods

Datasets GSE36980 and GSE5281 were selected to screen differentially expressed genes (DEGs), and the immune cell correlation analysis and GSEA analysis of DEGs were performed. The intersection with senescence genes was taken as differentially expressed senescence-related genes (DESRGs), and the GSE44770 dataset was used for further validation. The potential biological functions and signaling pathways were determined by GO and KEGG, and the hub genes were identified by 12 algorithms in Cytohubba. The expression of 10 hub genes in different brain regions was determined and single-cell sequencing analysis was performed, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed and targeted drug prediction was performed.

Results

A total of 2137 DEGs were screened from the GSE36980 and GSE5281 datasets, and 278 SRGs were identified from the CellAge database. The overlapping DEGs and SRGs constituted 29 DESRGs, including 14 senescence suppressor genes and 15 senescence inducible genes. The top 10 hub genes, including MDH1, CKB, PSMD14, SMARCA4, PEBP1, DDB2, ITPKB, ATF7IP, YAP1, and EWSR1 were screened. Furthermore, four diagnostic genes were identified: PMSD14, PEBP1, ITPKB, and ATF7IP. The ROC analysis showed that the respective area under the curves (AUCs) of PMSD14, PEBP1, ITPKB, and ATF7IP were 0.732, 0.701, 0.747, and 0.703 in the GSE36980 dataset and 0.870, 0.817, 0.902, and 0.834 in the GSE5281 dataset. In the GSE44770 dataset, PMSD14 (AUC, 0.838) and ITPKB (AUC, 0.952) had very high diagnostic values in the early stage of AD. Finally, based on these diagnostic genes, we found that the drug Abemaciclib is a targeted drug for the treatment of age-related AD. Flutamide can aggravate aging-related AD.

Conclusion

The results of this study suggest that cellular SRGs might play an important role in AD. PMSD14, PEBP1, ITPKB, and ATF7IP have the potential as specific biomarkers for the early diagnosis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Table 1
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data Availability Statement: All data and material generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Lambert, M. A.; Bickel, H.; Prince, M.; Fratiglioni, L.; Von Strauss, E.; Frydecka, D.; Kiejna, A.; Georges, J.; Reynish, E. L. Estimating the burden of early onset dementia; systematic review of disease prevalence. Eur J Neurol. 2014, 21, 563–569. doi:https://doi.org/10.1111/ene.12325

    Article  CAS  PubMed  Google Scholar 

  2. Scheltens, P.; Blennow, K.; Breteler, M. M.; de Strooper, B.; Frisoni, G. B.; Salloway, S.; Van der Flier, W. M. Alzheimer’s disease. Lancet. 2016, 388, 505–517. doi:https://doi.org/10.1016/S0140-6736(15)01124-1

    Article  CAS  PubMed  Google Scholar 

  3. Guo, T.; Zhang, D.; Zeng, Y.; Huang, T. Y.; Xu, H.; Zhao, Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. 2020, 15, 40. doi: https://doi.org/10.1186/s13024-020-00391-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Khan, S.; Barve, K. H.; Kumar, M. S. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr Neuropharmacol. 2020, 18, 1106–25. doi: https://doi.org/10.2174/1570159X18666200528142429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kritsilis, M.; V Rizou, S.; Koutsoudaki, P. N.; Evangelou, K.; Gorgoulis, V. G.; Papadopoulos, D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci. 2018, 19, 2937. doi: https://doi.org/10.3390/ijms19102937

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schrijvers, E. M.; Verhaaren, B. F.; Koudstaal, P. J.; Hofman, A.; Ikram, M. A.; Breteler, M. M. Is dementia incidence declining?: Trends in dementia incidence since 1990 in the Rotterdam Study. Neurology. 2012, 78, 1456–1463. doi: https://doi.org/10.1212/WNL.0b013e3182553be6

    Article  CAS  PubMed  Google Scholar 

  7. Liu R. M.. Aging, Cellular Senescence, and Alzheimer’s Disease. Int J Mol Sci. 2022, 23, 1989. doi: https://doi.org/10.3390/ijms23041989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He, N.; Jin, W. L.; Lok, K. H.; Wang, Y.; Yin, M.; Wang, Z. J. Amyloid-beta(1–42) oligomer accelerates senescence in adult hippocampal neural stem/progenitor cells via formylpeptide receptor 2. Cell Death Dis. 2013, 4, e924. doi: https://doi.org/10.1038/cddis.2013.437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Magini, A.; Polchi, A.; Tozzi, A.; Tancini, B.; Tantucci, M.; Urbanelli, L.; Borsello, T.; Calabresi, P.; Emiliani, C. Abnormal cortical lysosomal beta-hexosaminidase and beta-galactosidase activity at post-synaptic sites during Alzheimer’s disease progression. Int J Biochem Cell Biol. 2015, 58, 62–70. doi: https://doi.org/10.1016/j.biocel.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  10. Bussian, T. J.; Aziz, A., Meyer, C. F.; Swenson, B. L.; van Deursen, J. M.; Baker, D. J. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018, 562, 578–582. doi: https://doi.org/10.1038/s41586-018-0543-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC bioinformatics. 2013, 14, 1–15. doi: https://doi.org/10.1186/1471-2105-14-7

    Article  Google Scholar 

  12. Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A. C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013, 39, 782–795. doi:https://doi.org/10.1016/j.immuni.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  13. Yu, G.; Wang, L. G.; Han, Y.; He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012, 16, 284–287. doi:https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Subramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.; Ebert, B. L.; Gillette, M. A.; Paulovich, A.; Pomeroy, S. L.; Golub, T. R.; Lander, E. S.; et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005, 102, 15545–15550. doi:https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morris, G. M.; Huey, R.; Olson, A. J.. Using AutoDock for ligand-receptor docking. Current protocols in bioinformatics, 2008, Chapter 8. https://doi.org/10.1002/0471250953.bi0814s24

  16. Wang, Y.; Bryant, S. H.; Cheng, T.; Wang, J.; Gindulyte, A.; Shoemaker, B. A.; Thiessen, P. A.; He, S.; Zhang, J. PubChem BioAssay: 2017 update. Nucleic Acids Res. 2017, 45, D955–D963. doi:https://doi.org/10.1093/nar/gkw1118

    Article  CAS  PubMed  Google Scholar 

  17. Harry GJ. Microglia during development and aging. Pharmacol Ther. 2013, 139, 313–326. doi:https://doi.org/10.1016/j.pharmthera.2013.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seeker, L. A.; Bestard-Cuche, N.; Jäkel, S.; Kazakou, N. L.; Bøstrand, S. M. K.; Wagstaff, L. J.; Cholewa-Waclaw, J.; Kilpatrick, A. M.; Van Bruggen, D.; Kabbe, M.; et al. Brain matters: unveiling the distinct contributions of region, age, and sex to glia diversity and CNS function. Acta Neuropathol Commun. 2023, 11, 84. doi:https://doi.org/10.1186/s40478-023-01568-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi, Y.; Shao, Q.; Li, Z.; Gonzalez, G. A.; Lu, F.; Wang, D.; Pu, Y.; Huang, A.; Zhao, C.; He, C.; et al. Myt1L Promotes Differentiation of Oligodendrocyte Precursor Cells and is Necessary for Remyelination After Lysolecithin-Induced Demyelination. Neurosci Bull. 2018, 34, 247–260. doi:https://doi.org/10.1007/s12264-018-0207-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dai, L., Gao, F.; Wang, Q.; Lv, X.; Cheng, Z.; Wu, Y.; Chai, X.; Zetterberg, H.; Blennow, K.; Levey, A. I.; et al. Molecules of senescent glial cells differentiate Alzheimer’s disease from ageing. J Neurol Neurosurg Psychiatry. 2023, jnnp-2022-330743. doi:https://doi.org/10.1136/jnnp-2022-330743

  21. Tan, F. C.; Hutchison, E. R.; Eitan, E.; Mattson, M. P. Are there roles for brain cell senescence in aging and neurodegenerative disorders? Biogerontology. 2014, 15, 643–660. doi:https://doi.org/10.1007/s10522-014-9532-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Masaldan, S.; Clatworthy, S. A. S.; Gamell, C.; Smith, Z. M.; Francis, P. S.; Denoyer, D.; Meggyesy, P. M.; Fontaine, S.; Cater, M. A. Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy. Redox biology, 2018, 16, 322–331. doi:https://doi.org/10.1016/j.redox.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ribeiro, A.; Liu, F.; Srebrzynski, M.; Rother, S.; Adamowicz, K.; Wadowska, M.; Steiger, S.; Anders, H. J.; Schmaderer, C.; Koziel, J.; et al. Uremic Toxin Indoxyl Sulfate Promotes Macrophage-Associated Low-Grade Inflammation and Epithelial Cell Senescence. Int J Mol Sci. 2023, 24, 8031. doi:https://doi.org/10.3390/ijms24098031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holloway, K.; Neherin, K.; Dam, K. U.; Zhang, H. Cellular senescence and neurodegeneration. Hum Genet. 2023, 10.1007/s00439-023-02565-x. Advance online publication.

  25. Harada, R.; Furumoto, S.; Kudo, Y.; Yanai, K.; Villemagne, V. L.; Okamura, N. Imaging of Reactive Astrogliosis by Positron Emission Tomography. Front Neurosci. 2022, 16, 807435. doi:https://doi.org/10.3389/fnins.2022.807435

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front Immunol. 2020, 11:1024. doi:https://doi.org/10.3389/fimmu.2020.01024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, Z.; Tang, W.; Ibrahim, F. E. E. M.; Chen, X.; Yan, H.; Tao, C.; Wang, Z.; Guo, Y.; Fu, Y.; Wang, Q.; et al. Aβ Induces Neuroinflammation and Microglial M1 Polarization via cGAS-STING-IFITM3 Signaling Pathway in BV-2 Cells. Neurochem Res. 2023, 10.1007/s11064-023-03945-5. Advance online publication. doi:https://doi.org/10.1007/s11064-023-03945-5

  28. Zou, J.; Tao, S.; Johnson, A.; Tomljanovic, Z.; Polly, K. Klein, J.; Razlighi, Q. R.; Brickman, A. M.; Lee, S.; Stern, Y.; et al. Microglial activation, but not tau pathology, is independently associated with amyloid positivity and memory impairment. Neurobiol Aging. 2020, 85, 11–21. doi:https://doi.org/10.1016/j.neurobiolaging.2019.09.019

    Article  CAS  PubMed  Google Scholar 

  29. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017, 541(7638): 481–487. doi:https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salminen, A.; Ojala, J.; Kaarniranta, K.; Haapasalo, A.; Hiltunen, M.; Soininen, H. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci. 2011, 34, 3–11. doi:https://doi.org/10.1111/j.1460-9568.2011.07738.x

    Article  PubMed  Google Scholar 

  31. Gaikwad, S.; Puangmalai, N.; Bittar, A.; Montalbano, M.; Garcia, S.; McAllen, S.; Bhatt, N.; Sonawane, M.; Sengupta, U.; Kayed, R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep. 2021, 36, 109419. doi:https://doi.org/10.1016/j.celrep.2021.109419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lai, Y.; Lin, P.; Lin, F.; Chen, M.; Lin, C.; Lin, X.; Wu, L.; Zheng, M.; Chen, J. Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning. Front Immunol. 2022, 13, 1046410. doi:https://doi.org/10.3389/fimmu.2022.1046410

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhu, M.; Jia, L.; Li, F.; Jia, J. Identification of KIAA0513 and Other Hub Genes Associated With Alzheimer Disease Using Weighted Gene Coexpression Network Analysis. Front Genet. 2020, 11, 981. doi:https://doi.org/10.3389/fgene.2020.00981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, L.; Xu, H.; Ma, C.; Zhang, J.; Zhao, Y.; Yang, X.; Wang, S.; Li, D. Upregulation of deubiquitinase PSMD14 in lung adenocarcinoma (LUAD) and its prognostic significance. J Cancer. 2020, 11, 2962–2971. doi:https://doi.org/10.7150/jca.39539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Finelli, R.; Darbandi, S.; Pushparaj, P. N.; Henkel, R.; Ko, E.; Agarwal, A. In Silico Sperm Proteome Analysis to Investigate DNA Repair Mechanisms in Varicocele Patients. Front Endocrinol (Lausanne). 2021, 12, 757592. doi:https://doi.org/10.3389/fendo.2021.757592

    Article  PubMed  Google Scholar 

  36. Wojdała, A. L.; Chiasserini, D.; Bellomo, G.; Paciotti, S.; Gaetani, L.; Paoletti, F. P.; Parnetti, L. Phosphatidylethanolamine Binding Protein 1 (PEBP1) in Alzheimer’s Disease: ELISA Development and Clinical Validation. J Alzheimers Dis. 2022, 88, 1459–1468. doi: https://doi.org/10.3233/JAD-220323.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burgula, S.; Medisetty, R.; Jammulamadaka, N.; Musturi, S.; Ilavazhagan, G.; Singh, S. S. Downregulation of PEBP1 in rat brain cortex in hypoxia. J Mol Neurosci. 2010, 41, 36–47. doi:https://doi.org/10.1007/s12031-009-9275-7

    Article  CAS  PubMed  Google Scholar 

  38. Maki, M.; Matsukawa, N.; Yuasa, H.; Otsuka, Y.; Yamamoto, T.; Akatsu, H.; Okamoto, T.; Ueda, R.; Ojika, K. Decreased expression of hippocampal cholinergic neurostimulating peptide precursor protein mRNA in the hippocampus in Alzheimer disease. J Neuropathol Exp Neurol. 2002, 61, 176–185. doi:https://doi.org/10.1093/jnen/61.2.176

    Article  CAS  PubMed  Google Scholar 

  39. Nilsson, J.; Gobom, J.; Sjödin, S.; Brinkmalm, G.; Ashton, N. J.; Svensson, J.; Johansson, P.; Portelius, E.; Zetterberg, H.; Blennow, K.; et al. Cerebrospinal fluid biomarker panel for synaptic dysfunction in Alzheimer’s disease. Alzheimers Dement (Amst). 2021, 13, e12179. doi:https://doi.org/10.1002/dad2.12179

    Article  PubMed  Google Scholar 

  40. Chen, Q.; Wang, S.; Thompson, S. N.; Hall, E. D.; Guttmann, R. P. Identification and characterization of PEBP as a calpain substrate. J Neurochem. 2006, 99, 1133–1141. doi:https://doi.org/10.1111/j.1471-4159.2006.04160.x

    Article  CAS  PubMed  Google Scholar 

  41. Stygelbout, V.; Leroy, K.; Pouillon, V.; Ando, K.; D’Amico, E.; Jia, Y.; Luo, H. R.; Duyckaerts, C.; Erneux, C.; Schurmans, S.; et al. Inositol trisphosphate 3-kinase B is increased in human Alzheimer brain and exacerbates mouse Alzheimer pathology. Brain. 2014, 137, 537–52. doi: https://doi.org/10.1093/brain/awt344.

    Article  PubMed  Google Scholar 

  42. Kandeel, M.; Morsy, M. A.; Abd El-Lateef, H. M.; Marzok, M.; El-Beltagi, H. S.; Al Khodair, K. M.; Albokhadaim, I.; Venugopala, K. N. Cognitive- and memory-enhancing effects of Augmentin in Alzheimer’s rats through regulation of gene expression and neuronal cell apoptosis. Front Pharmacol. 2023, 14, 1154607. doi: https://doi.org/10.3389/fphar.2023.1154607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu X, Shen X, Wang J, et al. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer’s disease through regulating CDK6 signaling. Aging Cell. 2021, 20(9): e13465. doi:https://doi.org/10.1111/acel.13465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, L.; Ishihara, K.; Ichimura, T.; Fujita, N.; Hino, S.; Tomita, S.; Watanabe, S.; Saitoh, N.; Ito, T.; Nakao, M. MCAF1/AM is involved in Sp1-mediated maintenance of cancer-associated telomerase activity. J Biol Chem. 2009, 284, 5165–5174. doi:https://doi.org/10.1074/jbc.M807098200

    Article  CAS  PubMed  Google Scholar 

  45. Sasai, N.; Saitoh, N.; Saitoh, H.; Nakao, M. The transcriptional cofactor MCAF1/ATF7IP is involved in histone gene expression and cellular senescence. PLoS One. 2013, 8, e68478. doi:https://doi.org/10.1371/journal.pone.0068478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chaib, S.; Tchkonia, T.; Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022, 28, 1556–1568. doi:https://doi.org/10.1038/s41591-022-01923-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Birch, J., & Gil, J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020, 34, 1565–1576. doi:https://doi.org/10.1101/gad.343129.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, H. J.; Hoe, H. S. Inhibition of CDK4/6 regulates AD pathology, neuroinflammation and cognitive function through DYRK1A/STAT3 signaling. Pharmacol Res. 2023, 190, 106725. doi: https://doi.org/10.1016/j.phrs.2023.106725.

    Article  CAS  PubMed  Google Scholar 

  49. Yan, X. S.; Yang, Z. J.; Jia, J. X.; Song, W.; Fang, X.; Cai, Z. P.; Huo, D. S.; Wang, H. Protective mechanism of testosterone on cognitive impairment in a rat model of Alzheimer’s disease. Neural Regen Res. 2019, 14, 649–657. doi: https://doi.org/10.4103/1673-5374.245477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kang L, Li S, Xing Z, et al. Dihydrotestosterone treatment delays the conversion from mild cognitive impairment to Alzheimer’s disease in SAMP8 mice. Horm Behav. 2014, 65(5): 505–515. doi:https://doi.org/10.1016/j.yhbeh.2014.03.017

    Article  CAS  PubMed  Google Scholar 

  51. Behrouzi A, Kelley MR, Fehrenbacher JC. Oxidative DNA Damage: A Role in Altering Neuronal Function. J Cell Signal. 2022, 3(3): 160–166. doi:https://doi.org/10.33696/signaling.3.079

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding: This work was supported by grants from the National Natural Science Foundation of China (32161143021), the Henan Province Natural Science Foundation of China (182300410313), and the Bio-Med Interdisciplinary Innovative Program of Henan University (CJ1205A0240018). Henan University graduate «Talent Program» of Henan Province (SYLYC2023092).

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: Conceptualization, T.L. and J.L.; Data curation, T.L. and K.H.; Formal analysis, T.L. and S.L; Funding acquisition, J.W.; Methodology, T.L., K.H., and T.H.; Writing—original draft, T.L. and K.H.; Writing—review and editing,T.L., and J.W. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jianshe Wei.

Ethics declarations

Conflicts of Interest: The authors declare no conflict of interest.

Ethical standards: Not applicable.

Additional information

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Hou, K., Li, J. et al. Alzheimer’s Disease and Aging Association: Identification and Validation of Related Genes. J Prev Alzheimers Dis 11, 196–213 (2024). https://doi.org/10.14283/jpad.2023.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2023.101

Key words

Navigation