Skip to main content
Log in

Delayed Decline of Cognitive Function by Antihypertensive Agents: A Cohort Study Linked with Genotype Data

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

Arterial hypertension is among factors with the potential for increasing the risk of cognitive impairment in elderly subjects. However, studies investigating the effects of antihypertensives on cognitive function have reported mixed results.

Methods

We have used the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set (UDS) to investigate the effect of each class of antihypertensives, both as single and combined, in reducing the rate of conversion from normal to mild cognitive impairment (MCI).

Results

The use of antihypertensive drugs was associated with 21% (Hazard ratio: 0.79, p<01001) delay in the rate of conversion to MCI. This effect was modulated by age, gender, and genotypic APOE4 allele. Among different antihypertensive subclasses, calcium channel blockers (CCBs) (24%, HR: 0.76, P=0.004), diuretics (21%, HR: 0.79, P=0.006), and α1-adrenergic blockers (α1-ABs) (23%, HR: 0.77, P=0.034) significantly delayed the rate of MCI conversion. A significant effect was observed with the selective L-type voltage-gated CCBs, dihydropyridines, amlodipine (47%, HR=0.53, P<0.001) and nifedipine (49%, HR=0.51, P=0.012), whereas non-DHPs showed insignificant effect. Loop diuretics, potassium sparing diuretics, and thiazides all significantly reduced the rate of MCI conversion. Combination of α1-AB and diuretics led to synergistic effects; combination of vasodilators plus β-blockers (βBs), and α1-AB plus βBs led to additive effect in delaying the rate of MCI conversion, when compared to a single drug.

Conclusion

Our results could have implications for the more effective treatment of hypertensive elderly adults who are likely to be at high risk of cognitive decline and dementia. The choice of combination of antihypertensive therapy should also consider the combination which would lead to an optimum benefit on cognitive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

α1-AB :

α1-adrenergic blockers

AD :

Alzheimer disease

ADRC :

Alzheimer’s Disease Research Centers

ACEI :

Angiotensin-Converting Enzyme Inhibitors

ARB :

Angiotensin Receptor Blockers

βB :

β-blockers

:

β-amyloid

CCB:

Calcium Channel Blockers

CDR®:

Dementia Staging Instrument

CDR-SOB :

Clinical Dementia Rating Scale Sum of Boxes

MCI :

Mild Cognitive Impairment

MMSE :

Mini-Mental State Examination

MoCA :

Montreal Cognitive Assessment

NACC :

National Alzheimer’s Coordinating Center

NIA :

National Institute on Aging

NFT :

Neurofibrillary Tangles

UDS :

Uniform Data Set.

References

  1. Crous-Bou M, Minguillon C, Gramunt N, Molinuevo JL: Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther 2017, 9(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Selkoe DJ: Alzheimer’s disease: genes, proteins, and therapy. Physiological reviews 2001, 81(2):741–766.

    Article  CAS  PubMed  Google Scholar 

  3. Clement F, Gauthier S, Belleville S: Executive functions in mild cognitive impairment: emergence and breakdown of neural plasticity. Cortex 2013, 49(5):1268–1279.

    Article  PubMed  Google Scholar 

  4. Kochan NA, Breakspear M, Slavin MJ, Valenzuela M, McCraw S, Brodaty H, Sachdev PS: Functional alterations in brain activation and deactivation in mild cognitive impairment in response to a graded working memory challenge. Dement Geriatr Cogn Disord 2010, 30(6):553–568.

    Article  CAS  PubMed  Google Scholar 

  5. Schaller BJ: Strategies for molecular imaging dementia and neurodegenerative diseases. Neuropsychiatr Dis Treat 2008, 4(3):585–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacobs AH, Li H, Winkeler A, Hilker R, Knoess C, Ruger A, Galldiks N, Schaller B, Sobesky J, Kracht L et al: PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging 2003, 30(7):1051–1065.

    Article  CAS  PubMed  Google Scholar 

  7. Gupta Y, Lama RK, Kwon GR, Alzheimer’s Disease Neuroimaging I: Prediction and Classification of Alzheimer’s Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers. Front Comput Neurosci 2019, 13:72.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Petersen RC: Mild cognitive impairment as a diagnostic entity. J Intern Med 2004, 256(3):183–194.

    Article  CAS  PubMed  Google Scholar 

  9. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B: Current concepts in mild cognitive impairment. Arch Neurol 2001, 58(12):1985–1992.

    Article  CAS  PubMed  Google Scholar 

  10. Smith EE, Muzikansky A, McCreary CR, Batool S, Viswanathan A, Dickerson BC, Johnson K, Greenberg SM, Blacker D: Impaired memory is more closely associated with brain beta-amyloid than leukoaraiosis in hypertensive patients with cognitive symptoms. PLoS One 2018, 13(1):e0191345.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Petersen RC: Mild Cognitive Impairment. Continuum (Minneap Minn) 2016, 22(2 Dementia):404–418.

    Google Scholar 

  12. Petersen RC, Roberts RO, Knopman DS, Geda YE, Cha RH, Pankratz VS, Boeve BF, Tangalos EG, Ivnik RJ, Rocca WA: Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology 2010, 75(10):889–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burke SL, Hu T, Spadola CE, Li T, Naseh M, Burgess A, Cadet T: Mild cognitive impairment: associations with sleep disturbance, apolipoprotein e4, and sleep medications. Sleep Med 2018, 52:168–176.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D et al: Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011, 42(9):2672–2713.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pal K, Mukadam N, Petersen I, Cooper C: Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol 2018, 53(11):1149–1160.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kalmijn S, Foley D, White L, Burchfiel CM, Curb JD, Petrovitch H, Ross GW, Havlik RJ, Launer LJ: Metabolic cardiovascular syndrome and risk of dementia in Japanese-American elderly men. The Honolulu-Asia aging study. Arterioscler Thromb Vasc Biol 2000, 20(10):2255–2260.

    Article  CAS  PubMed  Google Scholar 

  17. Dlugaj M, Winkler A, Dragano N, Moebus S, Jockel KH, Erbel R, Weimar C, Heinz Nixdorf Recall Study Investigative G: Depression and mild cognitive impairment in the general population: results of the Heinz Nixdorf recall study. J Alzheimers Dis 2015, 45(1):159–174.

    Article  PubMed  Google Scholar 

  18. Mossello E, Pieraccioli M, Nesti N, Bulgaresi M, Lorenzi C, Caleri V, Tonon E, Cavallini MC, Baroncini C, Di Bari M et al: Effects of low blood pressure in cognitively impaired elderly patients treated with antihypertensive drugs. JAMA Intern Med 2015, 175(4):578–585.

    Article  PubMed  Google Scholar 

  19. Hanon O, Pequignot R, Seux ML, Lenoir H, Bune A, Rigaud AS, Forette F, Girerd X: Relationship between antihypertensive drug therapy and cognitive function in elderly hypertensive patients with memory complaints. J Hypertens 2006, 24(10):2101–2107.

    Article  CAS  PubMed  Google Scholar 

  20. Edwards JD, Ramirez J, Callahan BL, Tobe SW, Oh P, Berezuk C, Lanctot K, Swardfager W, Nestor S, Kiss A et al: Antihypertensive Treatment is associated with MRI-Derived Markers of Neurodegeneration and Impaired Cognition: A Propensity-Weighted Cohort Study. J Alzheimers Dis 2017, 59(3):1113–1122.

    Article  CAS  PubMed  Google Scholar 

  21. Fink HA, Jutkowitz E, McCarten JR, Hemmy LS, Butler M, Davila H, Ratner E, Calvert C, Barclay TR, Brasure M et al: Pharmacologic Interventions to Prevent Cognitive Decline, Mild Cognitive Impairment, and Clinical Alzheimer-Type Dementia: A Systematic Review. Ann Intern Med 2018, 168(1):39–51.

    Article  PubMed  Google Scholar 

  22. Sheffield JM, Karcher NR, Barch DM: Cognitive Deficits in Psychotic Disorders: A Lifespan Perspective. Neuropsychol Rev 2018, 28(4):509–533.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kaufer DI, Cummings JL, Ketchel P, Smith V, MacMillan A, Shelley T, Lopez OL, DeKosky ST: Validation of the NPI-Q, a brief clinical form of the Neuropsychiatric Inventory. J Neuropsychiatry Clin Neurosci 2000, 12(2):233–239.

    Article  CAS  PubMed  Google Scholar 

  24. Morris JC: Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr 1997, 9 Suppl 1:173–176; discussion 177–178.

    Article  PubMed  Google Scholar 

  25. Rizvi SM, Shaikh S, Waseem SM, Shakil S, Abuzenadah AM, Biswas D, Tabrez S, Ashraf GM, Kamal MA: Role of anti-diabetic drugs as therapeutic agents in Alzheimer’s disease. EXCLI J 2015, 14:684–696.

    PubMed  PubMed Central  Google Scholar 

  26. Geifman N, Brinton RD, Kennedy RE, Schneider LS, Butte AJ: Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer’s disease. Alzheimers Res Ther 2017, 9(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  27. den Brok M, van Dalen JW, Abdulrahman H, Larson EB, van Middelaar T, van Gool WA, van Charante EPM, Richard E: Antihypertensive Medication Classes and the Risk of Dementia: A Systematic Review and Network Meta-Analysis. J Am Med Dir Assoc 2021, 22(7):1386–1395 e1315.

    Article  PubMed  Google Scholar 

  28. Tzourio C, Anderson C, Chapman N, Woodward M, Neal B, MacMahon S, Chalmers J, Group PC: Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med 2003, 163(9):1069–1075.

    Article  CAS  PubMed  Google Scholar 

  29. Yang W, Luo H, Ma Y, Si S, Zhao H: Effects of Antihypertensive Drugs on Cognitive Function in Elderly Patients with Hypertension: A Review. Aging Dis 2021, 12(3):841–851.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sushma, Mondal AC: Role of GPCR signaling and calcium dysregulation in Alzheimer’s disease. Mol Cell Neurosci 2019, 101:103414.

    Article  CAS  PubMed  Google Scholar 

  31. Popugaeva E, Pchitskaya E, Bezprozvanny I: Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease — A therapeutic opportunity? Biochem Biophys Res Commun 2017, 483(4):998–1004.

    Article  CAS  PubMed  Google Scholar 

  32. Kumar A, Bodhinathan K, Foster TC: Susceptibility to Calcium Dysregulation during Brain Aging. Front Aging Neurosci 2009, 1:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jaworska A, Dzbek J, Styczynska M, Kuznicki J: Analysis of calcium homeostasis in fresh lymphocytes from patients with sporadic Alzheimer’s disease or mild cognitive impairment. Biochim Biophys Acta 2013, 1833(7):1692–1699.

    Article  CAS  PubMed  Google Scholar 

  34. Thibault O, Landfield PW: Increase in single L-type calcium channels in hippocampal neurons during aging. Science 1996, 272(5264):1017–1020.

    Article  CAS  PubMed  Google Scholar 

  35. Anekonda TS, Quinn JF, Harris C, Frahler K, Wadsworth TL, Woltjer RL: L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer’s disease. Neurobiol Dis 2011, 41(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  36. Paris D, Bachmeier C, Patel N, Quadros A, Volmar CH, Laporte V, Ganey J, Beaulieu-Abdelahad D, Ait-Ghezala G, Crawford F et al: Selective antihypertensive dihydropyridines lower Abeta accumulation by targeting both the production and the clearance of Abeta across the blood-brain barrier. Mol Med 2011, 17(3–4):149–162.

    Article  CAS  PubMed  Google Scholar 

  37. Disterhoft JF, Oh MM: Pharmacological and molecular enhancement of learning in aging and Alzheimer’s disease. J Physiol Paris 2006, 99(2–3):180–192.

    Article  CAS  PubMed  Google Scholar 

  38. Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, Bossini A, Fagard R, Gil-Extremera B, Laks T et al: The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med 2002, 162(18):2046–2052.

    Article  PubMed  Google Scholar 

  39. van Zwieten PA: The pharmacological properties of lipophilic calcium antagonists. Blood Press Suppl 1998, 2:5–9.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida H, Ayaori M, Suzukawa M, Hosoai H, Nishiwaki M, Ishikawa T, Nakamura H: Effects of Ca-antagonists on oxidative susceptibility of low density lipoprotein (LDL). Hypertens Res 1995, 18(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  41. Wolters FJ, Zonneveld HI, Hofman A, van der Lugt A, Koudstaal PJ, Vernooij MW, Ikram MA, Heart-Brain Connection Collaborative Research G: Cerebral Perfusion and the Risk of Dementia: A Population-Based Study. Circulation 2017, 136(8):719–728.

    Article  PubMed  Google Scholar 

  42. Ogoh S: Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci 2017, 67(3):345–351.

    Article  PubMed  Google Scholar 

  43. Tully PJ, Hanon O, Cosh S, Tzourio C: Diuretic antihypertensive drugs and incident dementia risk: a systematic review, meta-analysis and meta-regression of prospective studies. J Hypertens 2016, 34(6):1027–1035.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao W, Wang J, Ho L, Ono K, Teplow DB, Pasinetti GM: Identification of antihypertensive drugs which inhibit amyloid-beta protein oligomerization. J Alzheimers Dis 2009, 16(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  45. Hampel P, Romermann K, MacAulay N, Loscher W: Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodiumpotassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B. Sci Rep 2018, 8(1):9877.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Walker VM, Davies NM, Martin RM, Kehoe PG: Comparison of Antihypertensive Drug Classes for Dementia Prevention. Epidemiology 2020, 31(6):852–859.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yasar S, Lin FM, Fried LP, Kawas CH, Sink KM, DeKosky ST, Carlson MC, Ginkgo Evaluation of Memory Study I: Diuretic use is associated with better learning and memory in older adults in the Ginkgo Evaluation of Memory Study. Alzheimers Dement 2012, 8(3):188–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Coelho BP, Gaelzer MM, Dos Santos Petry F, Hoppe JB, Trindade VMT, Salbego CG, Guma F: Dual Effect of Doxazosin: Anticancer Activity on SH-SY5Y Neuroblastoma Cells and Neuroprotection on an In Vitro Model of Alzheimer’s Disease. Neuroscience 2019, 404:314–325.

    Article  CAS  PubMed  Google Scholar 

  49. Katsouri L, Vizcaychipi MP, McArthur S, Harrison I, Suarez-Calvet M, Lleo A, Lloyd DG, Ma D, Sastre M: Prazosin, an alpha(1)-adrenoceptor antagonist, prevents memory deterioration in the APP23 transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 2013, 34(4):1105–1115.

    Article  CAS  PubMed  Google Scholar 

  50. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL et al: Inflammation and Alzheimer’s disease. Neurobiol Aging 2000, 21(3):383–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heiss WD, Rosenberg GA, Thiel A, Berlot R, de Reuck J: Neuroimaging in vascular cognitive impairment: a state-of-the-art review. BMC Med 2016, 14(1):174.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tripepi G, Jager KJ, Dekker FW, Wanner C, Zoccali C: Bias in clinical research. Kidney Int 2008, 73(2):148–153.

    Article  CAS  PubMed  Google Scholar 

  53. Rouch L, Cestac P, Hanon O, Cool C, Helmer C, Bouhanick B, Chamontin B, Dartigues JF, Vellas B, Andrieu S: Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs 2015, 29(2):113–130.

    Article  CAS  PubMed  Google Scholar 

  54. Oscanoa TJ, Amado J, Vidal X, Romero-Ortuno R: Angiotensin-Receptor Blockers and the Risk of Alzheimer s Disease: A Meta-analysis. Curr Rev Clin Exp Pharmacol 2021, 16(1):73–78.

    Article  PubMed  Google Scholar 

  55. Musso CG, Alfie J: Resistant hypertension in the elderly-second line treatments: aldosterone antagonists, central alpha-agonist agents, alpha-adrenergic receptor blockers, direct vasodilators, and exogenous nitric oxide donors. Cardiovasc Hematol Agents Med Chem 2015, 12(3):170–173.

    Article  PubMed  Google Scholar 

  56. Feig PU: Cellular mechanism of action of loop diuretics: implications for drug effectiveness and adverse effects. Am J Cardiol 1986, 57(2):14A–19A.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank the National Alzheimer’s Coordinating Center (NACC) for provision of the Uniform Data Set, and Ms. Merilee Taylan and Mr. Zachary Miller for guidance and clarifications related to the data set. We are indebted to the study members and their families for their ongoing commitment and support of NACC research philosophy. The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG005131 (PI James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD,PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P50 AG005681 (PI John Morris, MD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohara Sternberg.

Ethics declarations

Ethical standards: The authors transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, to Serdi in the event the manuscript is published.

Conflict of interest: ZS, RP, JY, MT, DH, BS have no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sternberg, Z., Podolsky, R., Yu, J. et al. Delayed Decline of Cognitive Function by Antihypertensive Agents: A Cohort Study Linked with Genotype Data. J Prev Alzheimers Dis 9, 679–691 (2022). https://doi.org/10.14283/jpad.2022.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2022.73

Key words

Navigation