Skip to main content
Log in

Prediction of Cognitive Decline for Enrichment of Alzheimer’s Disease Clinical Trials

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

A key issue to Alzheimer’s disease clinical trial failures is poor participant selection. Participants have heterogeneous cognitive trajectories and many do not decline during trials, which reduces a study’s power to detect treatment effects. Trials need enrichment strategies to enroll individuals who are more likely to decline.

Objectives

To develop machine learning models to predict cognitive trajectories in participants with early Alzheimer’s disease and presymptomatic individuals over 24 and 48 months respectively.

Design

Prognostic machine learning models were trained from a combination of demographics, cognitive tests, APOE genotype, and brain imaging data.

Setting

Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), National Alzheimer’s Coordinating Center (NACC), Open Access Series of Imaging Studies (OASIS-3), PharmaCog, and a Phase 3 clinical trial in early Alzheimer’s disease were used for this study.

Participants

A total of 2098 participants who had demographics, cognitive tests, APOE genotype, and brain imaging data, as well as follow-up visits for 24–48 months were included.

Measurements

Baseline magnetic resonance imaging, cognitive tests, demographics, and APOE genotype were used to separate decliners, defined as individuals whose CDR-Sum of Boxes scores increased during a predefined time window, from stable individuals. A prognostic model to predict decline at 24 months in early Alzheimer’s disease was trained on 1151 individuals who had baseline diagnoses of mild cognitive impairment and Alzheimer’s dementia from ADNI and NACC. This model was validated on 115 individuals from a placebo arm of a Phase 3 clinical trial and 76 individuals from the PharmaCog dataset. A second prognostic model to predict decline at 48 months in presymptomatic populations was trained on 628 individuals from ADNI and NACC who were cognitively unimpaired at baseline. This model was validated on 128 individuals from OASIS-3.

Results

The models achieved up to 79% area under the curve (cross-validated and out-of-sample). Power analyses showed that using prognostic models to recruit enriched cohorts of predicted decliners can reduce clinical trial sample sizes by as much as 51% while maintaining the same detection power.

Conclusions

Prognostic tools for predicting cognitive decline and enriching clinical trials with participants at the highest risk of decline can improve trial quality, derisk endpoint failures, and accelerate therapeutic development in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gauthier S, Albert M, Fox N, Goedert M, Kivipelto M, Mestre-Ferrandiz J, et al. Why has therapy development for dementia failed in the last two decades? Alzheimers Dement. 2016 Jan;12(1):60–4. Available from: https://doi.org/10.1016/j.jalz.2015.12.003

    Article  PubMed  Google Scholar 

  2. Aisen PS, Cummings J, Doody R, Kramer L, Salloway S, Selkoe DJ, et al. The Future of Anti-Amyloid Trials. J Prev Alzheimers Dis. 2020;7(3):146–51. Available from: https://doi.org/10.14283/jpad.2020.24

    CAS  PubMed  Google Scholar 

  3. Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell. 2019 Oct 3;179(2):312–39. Available from: https://doi.org/10.1016/j.cell.2019.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. N Engl J Med. 2018 Jan 25;378(4):321–30. Available from: https://doi.org/10.1056/NEJMoa1705971

    Article  CAS  PubMed  Google Scholar 

  5. Wessels AM, Tariot PN, Zimmer JA, Selzler KJ, Bragg SM, Andersen SW, et al. Efficacy and Safety of Lanabecestat for Treatment of Early and Mild Alzheimer Disease: The AMARANTH and DAYBREAK-ALZ Randomized Clinical Trials. JAMA Neurol. 2020 Feb 1;77(2):199–209. Available from: https://doi.org/10.1001/jamaneurol.2019.3988

    Article  PubMed  Google Scholar 

  6. Egan MF, Kost J, Voss T, Mukai Y, Aisen PS, Cummings JL, et al. Randomized Trial of Verubecestat for Prodromal Alzheimer’s Disease. N Engl J Med. 2019 Apr 11;380(15):1408–20. Available from: https://doi.org/10.1056/NEJMoa1812840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther. 2021 Apr 17;13(1):1–14. Available from: https://doi.org/10.1186/s13195-021-00813-8

    Article  CAS  Google Scholar 

  8. Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther. 2017 Dec 8;9(1):95. Available from: https://doi.org/10.1186/s13195-017-0318-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, et al. Donanemab in Early Alzheimer’s Disease. N Engl J Med. 2021 May 6;384(18):1691–704. Available from: https://doi.org/10.1056/NEJMoa2100708

    Article  CAS  PubMed  Google Scholar 

  10. Burns DK, Chiang C, Welsh-Bohmer KA, Brannan SK, Culp M, O’Neil J, et al. The TOMMORROW study: Design of an Alzheimer’s disease delay-of-onset clinical trial. Alzheimers Dement. 2019 Oct 28;5:661–70. Available from: https://doi.org/10.1016/j.trci.2019.09.010

    Article  Google Scholar 

  11. Sperling R, Henley D, Aisen PS, Raman R, Donohue MC, Ernstrom K, et al. Findings of Efficacy, Safety, and Biomarker Outcomes of Atabecestat in Preclinical Alzheimer Disease: A Truncated Randomized Phase 2b/3 Clinical Trial. JAMA Neurol. 2021 Mar 1;78(3):293–301. Available from: https://doi.org/10.1001/jamaneurol.2020.4857

    Article  PubMed  Google Scholar 

  12. Budd Haeberlein S, von Hehn C, Tian Y, Chalkias S, Muralidharan KK, Chen T, et al. Emerge and Engage topline results: Phase 3 studies of aducanumab in early Alzheimer’s disease. Alzheimers Dement. 2020 Dec;16(S9). Available from: https://doi.org/10.1002/alz.047259

  13. Petersen RC, Thomas RG, Aisen PS, Mohs RC, Carrillo MC, Albert MS, et al. Randomized controlled trials in mild cognitive impairment: Sources of variability. Neurology. 2017 May;88(18):1751–8. Available from: https://doi.org/10.1212/WNL.0000000000003907

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jutten RJ, Sikkes SAM, Van der Flier WM, Scheltens P, Visser PJ, Tijms BM, et al. Finding Treatment Effects in Alzheimer Trials in the Face of Disease Progression Heterogeneity. Neurology. 2021 Jun 1;96(22):e2673–84. Available from: https://doi.org/10.1212/WNL.0000000000012022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cummings J. Lessons Learned from Alzheimer Disease: Clinical Trials with Negative Outcomes. Clin Transl Sci. 2018 Mar;11(2):147–52. Available from: https://doi.org/10.1111/cts.12491

    Article  PubMed  Google Scholar 

  16. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Budd Haeberlein S, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 Apr;14(4):535–62. Available from: https://doi.org/10.1016/j.jalz.2018.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lam B, Masellis M, Freedman M, Stuss DT, Black SE. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res Ther. 2013 Jan 9 [cited 2021 Aug 6];5(1):1. Available from: https://doi.org/10.1186/alzrt155

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scheltens NME, Tijms BM, Koene T, Barkhof F, Teunissen CE, Wolfsgruber S, et al. Cognitive subtypes of probable Alzheimer’s disease robustly identified in four cohorts. Alzheimers Dement. 2017 Nov;13(11):1226–36. Available from: https://doi.org/10.1016/j.jalz.2017.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  19. Crane PK, Trittschuh E, Mukherjee S, Saykin AJ, Sanders RE, Larson EB, et al. Incidence of cognitively defined late-onset Alzheimer’s dementia subgroups from a prospective cohort study. Alzheimers Dement. 2017 Dec;13(12):1307–16. Available from: https://doi.org/10.1016/j.jalz.2017.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ossenkoppele R, Lyoo CH, Sudre CH, van Westen D, Cho H, Ryu YH, et al. Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer’s disease. Alzheimers Dement. 2020 Feb;16(2):335–44. Available from: https://doi.org/10.1016/j.jalz.2019.08.201

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol. 2021 Jun;20(6):484–96. Available from: https://doi.org/10.1016/S1474-4422(21)00066-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ansart M, Epelbaum S, Bassignana G, Bône A, Bottani S, Cattai T, et al. Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review. Med Image Anal. 2021 Jan;67:101848. Available from: https://doi.org/10.1016/j.media.2020.101848

    Article  PubMed  Google Scholar 

  23. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Jun 28;546(7660):686. Available from: https://doi.org/10.1038/nature22985

    Article  CAS  PubMed  Google Scholar 

  24. Nam JG, Park S, Hwang EJ, Lee JH, Jin K-N, Lim KY, et al. Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology. 2019 Jan 1;290(1):218–28. Available from: https://doi.org/10.1148/radiol.2018180237

    Article  PubMed  Google Scholar 

  25. Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, et al. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer’s Disease. N Engl J Med. 2018 May 3;378(18):1691–703. Available from: https://doi.org/10.1056/NEJMoa1706441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lopez Lopez C, Tariot PN, Caputo A, Langbaum JB, Liu F, Riviere M-E, et al. The Alzheimer’s Prevention Initiative Generation Program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimers Dement. 2019 Jun 12;5:216–27. Available from: https://doi.org/10.1016/j.trci.2019.02.005

    Article  Google Scholar 

  27. Sperling RA, Donohue MC, Raman R, Sun C-K, Yaari R, Holdridge K, et al. Association of Factors With Elevated Amyloid Burden in Clinically Normal Older Individuals. JAMA Neurol. 2020 Jun 1;77(6):735–45. Available from: https://doi.org/10.1001/jamaneurol.2020.0387

    Article  PubMed  Google Scholar 

  28. Galluzzi S, Marizzoni M, Babiloni C, Albani D, Antelmi L, Bagnoli C, et al. Clinical and biomarker profiling of prodromal Alzheimer’s disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: a “European ADNI study.”. J Intern Med. 2016 Jun;279(6):576–91. Available from: https://doi.org/10.1111/joim.12482

    Article  CAS  PubMed  Google Scholar 

  29. LaMontagne PJ, Benzinger TLS, Morris JC, Keefe S, Hornbeck R, Xiong C, et al. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. medRxiv. 2019. Available from: https://doi.org/10.1101/2019.12.13.19014902

  30. Jovicich J, Marizzoni M, Sala-Llonch R, Bosch B, Bartrés-Faz D, Arnold J, et al. Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations. Neuroimage. 2013 Dec;83:472–84. Available from: https://doi.org/10.1016/j.neuroimage.2013.05.007

    Article  PubMed  Google Scholar 

  31. Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD. Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier; 2007.

  32. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007 Oct;38(1):95–113. Available from: https://doi.org/10.1016/j.neuroimage.2007.07.007

    Article  PubMed  Google Scholar 

  33. Rolls ET, Huang C-C, Lin C-P, Feng J, Joliot M. Automated anatomical labelling atlas 3. Neuroimage. 2020 Feb 1;206:116189. Available from: https://doi.org/10.1016/j.neuroimage.2019.116189

    Article  PubMed  Google Scholar 

  34. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993 Nov;43(11):2412–4. Available from: https://doi.org/10.1212/wnl.43.11.2412-a

    Article  CAS  PubMed  Google Scholar 

  35. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995 Sep 1;20(3):273–97. Available from: https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  36. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011 Oct;2825–30. Available from: https://www.jmlr.org/papers/v12/pedregosa11a.html

  37. Noordzij M, Tripepi G, Dekker FW, Zoccali C, Tanck MW, Jager KJ. Sample size calculations: basic principles and common pitfalls. Nephrol Dial Transplant. 2010 May;25(5):1388–93. Available from: https://doi.org/10.1093/ndt/gfp732

    Article  PubMed  Google Scholar 

  38. Burns DK, Alexander RC, Welsh-Bohmer KA, Culp M, Chiang C, O’Neil J, et al. Safety and efficacy of pioglitazone for the delay of cognitive impairment in people at risk of Alzheimer’s disease (TOMMORROW): a prognostic biomarker study and a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021 Jul;20(7):537–47. Available from: https://doi.org/10.1016/S1474-4422(21)00043-0

    Article  CAS  PubMed  Google Scholar 

  39. Szabo-Reed AN, Vidoni E, Binder EF, Burns J, Cullum CM, Gahan WP, et al. Rationale and methods for a multicenter clinical trial assessing exercise and intensive vascular risk reduction in preventing dementia (rrAD Study). Contemp Clin Trials. 2019 Apr;79:44–54. Available from: https://doi.org/10.1016/j.cct.2019.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wolz R, Schwarz AJ, Gray KR, Yu P, Hill DLG, Alzheimer’s Disease Neuroimaging Initiative. Enrichment of clinical trials in MCI due to AD using markers of amyloid and neurodegeneration. Neurology. 2016 Sep 20;87(12):1235–41. Available from: https://doi.org/10.1212/WNL.0000000000003126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mattsson N, Carrillo MC, Dean RA, Devous MD Sr, Nikolcheva T, Pesini P, et al. Revolutionizing Alzheimer’s disease and clinical trials through biomarkers. Alzheimers Dement. 2015 Dec;1(4):412–9. Available from: https://doi.org/10.1016/j.dadm.2015.09.001

    Google Scholar 

  42. Ward A, Tardiff S, Dye C, Arrighi HM. Rate of conversion from prodromal Alzheimer’s disease to Alzheimer’s dementia: a systematic review of the literature. Dement Geriatr Cogn Dis Extra. 2013;3(1):320–32. Available from: https://doi.org/10.1159/000354370

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liem F, Dadi K, Engemann DA, Gramfort A, Bellec P, Cameron Craddock R, et al. Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging. bioRxiv. 2020. p. 2020.06.10.142174. Available from: https://doi.org/10.1101/2020.06.10.142174

  44. Marinescu RV, Oxtoby NP, Young AL, Bron EE, Toga AW, Weiner MW, et al. TADPOLE Challenge: Accurate Alzheimer’s Disease Prediction Through Crowdsourced Forecasting of Future Data. In: Predictive Intelligence in Medicine. Springer International Publishing; 2019. p. 1–10. Available from: https://doi.org/10.1007/978-3-030-32281-6_1

  45. Bhagwat N, Viviano JD, Voineskos AN, Chakravarty MM, Alzheimer’s Disease Neuroimaging Initiative. Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data. PLoS Comput Biol. 2018 Sep 14;14(9):e1006376. Available from: https://doi.org/10.1371/journal.pcbi.1006376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shafiee N, Dadar M, Ducharme S, Louis Collins D. Automatic prediction of cognitive and functional decline can significantly decrease the number of subjects required for clinical trials in early Alzheimer’s disease. arXiv [q-bio. QM]. 2021. Available from: https://doi.org/10.48550/arXiv.2101.08346

  47. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol [Internet]. 2011 Mar;7(3):137–52. Available from: https://doi.org/10.1038/nrneurol.2011.2

    Article  Google Scholar 

  48. Berres M, Monsch AU, Spiegel R. Using historical data to facilitate clinical prevention trials in Alzheimer disease? An analysis of longitudinal MCI (mild cognitive impairment) data sets. Alzheimers Res Ther. 2021 May 7;13(1):97. Available from: https://doi.org/10.1186/s13195-021-00832-5

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cullen NC, Leuzy A, Palmqvist S, Janelidze S, Stomrud E, Pesini P, et al. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. Nature Aging. 2021 Jan 1;1(1):114–23. Available from: https://doi.org/10.1038/s43587-020-00003-5

    Article  Google Scholar 

  50. Lundberg S, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017 May 22;30. Available from: https://doi.org/10.48550/arXiv.1705.07874

Download references

Acknowledgements

Part of the data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (https://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data are contributed by the NIA-funded ADRCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG005131 (PI James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, Md), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P50 AG005681 (PI John Morris, MD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD). Data were provided in part by OASIS-3: Principal Investigators: T. Benzinger, D. Marcus, J. Morris; NIH P50 AG00561, P30 NS09857781, P01 AG026276, P01 AG003991, R01 AG043434, ULI TR000448, R01 EB009352. AV-45 doses were provided by Avid Radiopharmaceuticals, a wholly owned subsidiary of Eli Lilly. The PharmaCog project is funded through the European Community’s ‘Seventh Framework’ Programme (FP7/2007-2013) for an innovative scheme, the Innovative Medicines Initiative (IMI). IMI is a young and unique public-private partnership, founded in 2008 by the pharmaceutical industry (represented by the European Federation of Pharmaceutical Industries and Associations), EFPIA and the European Communities (represented by the European Commission).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Christian Dansereau.

Additional information

How to cite this article: A. Tam, C. Laurent, S. Gauthier, et al. Prediction of Cognitive Decline for Enrichment of Alzheimer’s Disease Clinical Trials. J Prev Alz Dis 2022;3(9):400-409; https://doi.org/10.14283/jpad.2022.49

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Declarations: Dr Tam, Dr Laurent, and Dr Dansereau are employees of Perceiv Research Inc and hold stocks/stock options in Perceiv Research Inc. Dr Gauthier has nothing to disclose.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, A., Laurent, C., Gauthier, S. et al. Prediction of Cognitive Decline for Enrichment of Alzheimer’s Disease Clinical Trials. J Prev Alzheimers Dis 9, 400–409 (2022). https://doi.org/10.14283/jpad.2022.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2022.49

Key words

Navigation