Skip to main content
Log in

Recommendations for Reducing Heterogeneity in Handgrip Strength Protocols

  • Special Article
  • Published:
The Journal of Frailty & Aging Aims and scope Submit manuscript

Abstract

Handgrip dynamometers are widely used to measure handgrip strength (HGS). HGS is a safe and easy to obtain measure of strength capacity, and a reliable assessment of muscle function. Although HGS provides robust prognostic value and utility, several protocol variants exist for HGS in clinical settings and translational research. This lack of methodological consistency could threaten the precision of HGS measurements and limit comparisons between the growing number of studies measuring HGS. Providing awareness of the protocol variants for HGS and making suggestions to reduce the implications of these variants will help to improve methodological consistency. Moreover, leveraging recent advancements in HGS equipment may enable us to use more sophisticated HGS dynamometer technologies to better assess muscle function. This Special Article will 1) highlight differences in HGS protocols and instrumentation, 2) provide recommendations to better specify HGS procedures and equipment, and 3) present future research directions for studies that measure HGS. We also provided a minimum reporting criteria framework to help future research studies avoid underreporting of HGS procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Lanska DJ. William Hammond, the dynamometer, the dynamograph. Arch Neurol. 2000;S7(11):1649–1653. doi:https://doi.org/10.1001/archneur.S7.11.1649.

    Google Scholar 

  2. Mafi P, Mafi R, Hindocha S, Griffin M, Khan W. A systematic review of dynamometry and its role in hand trauma assessment. Open Orthop J. 2012;6:95–102. doi:https://doi.org/10.2174/1874325001206010095.

    Article  CAS  PubMed  Google Scholar 

  3. McGrath RP, Kraemer WJ, Snih SA, Peterson MD. Handgrip Strength and Health in Aging Adults. Sports Med. 2018;48(9): 1993–2000. doi:https://doi.org/10.1007/s40279-018-0952-y.

    Article  PubMed  Google Scholar 

  4. Beaudart C, Rolland Y, Cruz-Jentoft AJ, et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif Tissue Int. 2019; 105(1): 1–14. doi: https://doi.org/10.1007/s00223-019-00545-w.

    Article  CAS  PubMed  Google Scholar 

  5. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi:https://doi.org/10.1093/ageing/afy169.

    Article  PubMed  Google Scholar 

  6. Clark BC, Carson RG. Sarcopenia and Neuroscience: Learning to Communicate. J Gerontol A Biol Sci Med Sci. 2021;76(10):1882–1890. doi:https://doi.org/10.1093/gerona/glab098.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Crosignani S, Sedini C, Calvani R, Marzetti E, Cesari M. Sarcopenia In Primary Care: Screening, Diagnosis, Management. J Frailty Aging. 2021; 10(3): 226–232. doi: https://doi.org/10.14283/jfa.2020.63.

    CAS  PubMed  Google Scholar 

  8. Patrizio E, Calvani R, Marzetti E, Cesari M. Physical Functional Assessment in Older Adults. J Frailty Aging. 2021;10(2):141–149. doi:https://doi.org/10.14283/jfa.2020.61.

    CAS  PubMed  Google Scholar 

  9. Bhasin S, Travison TG, Manini TM, et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J Am Geriatr Soc. 2020;68(7):1410–1418. doi:https://doi.org/10.1111/jgs.16372.

    Article  PubMed  Google Scholar 

  10. Xue QL. The frailty syndrome: definition and natural history. Clin Geriatr Med. 2011;27(1):1–15. doi:https://doi.org/10.1016/j.cger.2010.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bohannon RW. Grip Strength: An Indispensable Biomarker For Older Adults. Clin Interv Aging. 2019; 14:1681–1691. Published 2019 Oct 1. doi:https://doi.org/10.2147/CIA.S194543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGrath R, Johnson N, Klawitter L, et al. What are the association patterns between handgrip strength and adverse health conditions? A topical review. SAGE Open Med. 2020:8:2050312120910358. doi:https://doi.org/10.1177/2050312120910358.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Soysal P, Hurst C, Demurtas J, et al. Handgrip strength and health outcomes: Umbrella review of systematic reviews with meta-analyses of observational studies. J Sport Health Sci. 2021; 10(3): 290–295. doi:https://doi.org/10.1016/j.jshs.2020.06.009.

    Article  PubMed  Google Scholar 

  14. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–M156. doi:https://doi.org/10.1093/gerona/56.3.m146.

    Article  CAS  PubMed  Google Scholar 

  15. Sayer AA, Kirkwood TB. Grip strength and mortality: a biomarker of ageing?. Lancet. 2015;386(9990):226–227. doi:https://doi.org/10.1016/S0140-6736(14)62349-7.

    Article  PubMed  Google Scholar 

  16. Sousa-Santos AR, Amaral TF. Differences in handgrip strength protocols to identify sarcopenia and frailty — a systematic review. BMC Geriatr. 2017; 17(1): 238. Published 2017 Oct 16. doi:https://doi.org/10.1186/s12877-017-0625-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fess E, Moran C. Clinical Assessment Recommendations. 1st Ed. Indianapolis: American Society of Hand Therapists; 1981.

    Google Scholar 

  18. Fess E. Clinical Assessment Recommendations. Chicago: American Society of Hand Therapists; 1992.

    Google Scholar 

  19. MacDermid J, Solomon G, Fedorczyk J, Valdes K. Clinical Assessment Recommendations. 3rd Ed. Impairment-Based Conditions. Mount Laurel: American Society of Hand Therapists; 2015.

    Google Scholar 

  20. Roberts HC, Denison HJ, Martin HJ, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423–429. doi:https://doi.org/10.1093/ageing/afr051.

    Article  PubMed  Google Scholar 

  21. National Health and Nutrition Examination Survey (NHANES). Muscle Strength Procedures Manual. https://wwwn.cdc.gov/nchs/data/nhanes/2011-2012/manuals/Muscle_Strength_Proc_Manual.pdf. Accessed 9 Dec 2021.

  22. National Health and Nutrition Examination Survey (NHANES). Muscle Strength Procedures Manual. https://wwwn.cdc.gov/nchs/data/nhanes/2013-2014/manuals/Muscle_Strength_2013.pdf. Accessed 9 Dec 2021.

  23. HRS Documentation Report. Documentation of Physical Measures, Anthropometrics and Blood Pressure in the Health and Retirement Study. https://hrs.isr.umich.edu/sites/default/files/biblio/dr-011.pdf. Accessed 9 Dec 2021.

  24. Al Snih S, Markides KS, Ottenbacher KJ, Raji MA. Hand grip strength and incident ADL disability in elderly Mexican Americans over a seven-year period. Aging Clin Exp Res. 2004;16(6):481–486. doi:https://doi.org/10.1007/BF03327406.

    Article  PubMed  Google Scholar 

  25. Firth J, Stubbs B, Vancampfort D, et al. Grip Strength Is Associated With Cognitive Performance in Schizophrenia and the General Population: A UK Biobank Study of 476559 Participants. Schizophr Bull. 2018;44(4):728–736. doi:https://doi.org/10.1093/schbul/sby034.

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Lira C, Vargas V, Silva W, Bachi A, Vancini R, Andrade M. Relative Strength, but Not Absolute Muscle Strength, Is Higher in Exercising Compared to Non-Exercising Older Women. Sports (Basel). 2019;7(1): 19. doi:https://doi.org/10.3390/sports7010019.

    Article  Google Scholar 

  27. Harris T. Muscle mass and strength: relation to function in population studies. J Nutr. 1997;127(5 Suppl): 1004S–1006S. doi:https://doi.org/10.1093/jn/127.5.1004S.

    Article  CAS  PubMed  Google Scholar 

  28. Whitney DG, Peterson MD. The Association Between Differing Grip Strength Measures and Mortality and Cerebrovascular Event in Older Adults: National Health and Aging Trends Study. Front Physiol. 2019;9:1871. doi:https://doi.org/10.3389/fphys.2018.01871.

    Article  PubMed  PubMed Central  Google Scholar 

  29. McGrath R. Comparing absolute handgrip strength and handgrip strength normalized to body weight in aging adults. Aging Clin Exp Res. 2019;31(12):1851–1853. doi: https://doi.org/10.1007/s40520-019-01126-5.

    Article  PubMed  Google Scholar 

  30. Pasdar Y, Darbandi M, Mirtaher E, Rezaeian S, Najafi F, Hamzeh B. Associations between Muscle Strength with Different Measures of Obesity and Lipid Profiles in Men and Women: Results from RaNCD Cohort Study. Clin Nutr Res. 2019;8(2): 148–158. doi: https://doi.org/10.7762/cnr.2019.8.2.148.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nevill AM, Tomkinson GR, Lang JJ, Wutz W, Myers TD. How Should Adult Handgrip Strength Be Normalized? Allometry Reveals New Insights and Associated Reference Curves. Med Sci Sports Exerc. 2021;https://doi.org/10.1249/MSS.0000000000002771. doi: https://doi.org/10.1249/MSS.0000000000002771.

  32. McGrath R, Vincent BM, Jurivich DA, et al. Handgrip Strength Asymmetry and Weakness Together Are Associated With Functional Disability in Aging Americans. J Gerontol A Biol Sci Med Sci. 2021;76(2):291–296. doi:https://doi.org/10.1093/gerona/glaa100.

    Article  PubMed  Google Scholar 

  33. McGrath R, Blackwell TL, Ensrud KE, Vincent BM, Cawthon PM. The Associations of Handgrip Strength and Leg Extension Power Asymmetry on Incident Recurrent Falls and Fractures in Older Men. J Gerontol A Biol Sci Med Sci. 2021;76(9):e221–e227. doi:https://doi.org/10.1093/gerona/glab133.

    Article  PubMed  Google Scholar 

  34. Lee SY, Jin H, Arai H, Lim JY. Handgrip strength: Should repeated measurements be performed in both hands?. Geriatr Gerontol Int. 2021;21(5):426–432. doi:https://doi.org/10.1111/ggi.14146

    Article  PubMed  Google Scholar 

  35. McGrath R, Clark BC, Cesari M, Johnson C, Jurivich DA. Handgrip strength asymmetry is associated with future falls in older Americans. Aging Clin Exp Res. 2021;33(9):2461–2469. doi:https://doi.org/10.1007/s40520-020-01757-z.

    Article  PubMed  Google Scholar 

  36. Burkett T. Norm-Referenced Testing and Criterion-Referenced Testing. The TESOL Encyclopedia of English Language Teaching. 2018; 12:1–5.

    Google Scholar 

  37. Hoffmann MD, Colley RC, Doyon CY, Wong SL, Tomkinson GR, Lang JJ. Normative-referenced percentile values for physical fitness among Canadians. Health Rep. 2019;30(10):14–22. doi:https://doi.org/10.25318/82-003-x201901000002-eng.

    PubMed  Google Scholar 

  38. Peterson MD, Krishnan C. Growth Charts for Muscular Strength Capacity With Quantile Regression. Am J Prev Med. 2015;49(6):935–938. doi:https://doi.org/10.1016/j.amepre.2015.05.013.

    Article  PubMed  PubMed Central  Google Scholar 

  39. McGrath R, Hackney KJ, Ratamess NA, Vincent BM, Clark BC, Kraemer WJ. Absolute and Body Mass Index Normalized Handgrip Strength Percentiles by Gender, Ethnicity, and Hand Dominance in Americans. Adv Geriatr Med Res. 2020;2(1):e200005. doi:https://doi.org/10.20900/agmr20200005.

    PubMed  Google Scholar 

  40. Perna FM, Coa K, Troiano RP, et al. Muscular Grip Strength Estimates of the U.S. Population from the National Health and Nutrition Examination Survey 2011–2012. J Strength CondRes. 2016;30(3):867–874. doi:https://doi.org/10.1519/JSC0000000000001104.

    Article  Google Scholar 

  41. Dodds RM, Syddall HE, Cooper R, et al. Grip strength across the life course: normative data from twelve British studies. PLoS One. 2014;9(12):e113637. doi:https://doi.org/10.1371/journal.pone.0113637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dodds RM, Syddall HE, Cooper R, Kuh D, Cooper C, Sayer AA. Global variation in grip strength: a systematic review and meta-analysis of normative data. Age Ageing. 2016;45(2):209–216. doi:https://doi.org/10.1093/ageing/afv192.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mayya SS, Monteiro AD, Ganapathy S. Types of biological variables. J Thorac Dis. 2017;9(6):1730–1733. doi:https://doi.org/10.21037/jtd.2017.05.75.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alley DE, Shardell MD, Peters KW, et al. Grip strength cutpoints for the identification of clinically relevant weakness. J Gerontol A Biol Sci Med Sci. 2014;69(5):559–566. doi: https://doi.org/10.1093/gerona/glu011.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Duchowny KA, Peterson MD, Clarke PJ. Cut Points for Clinical Muscle Weakness Among Older Americans. Am J Prev Med. 2017;53(1):63–69. doi:https://doi.org/10.1016/j.amepre.2016.12.022.

    Article  PubMed  PubMed Central  Google Scholar 

  46. McGrath RP, Ottenbacher KJ, Vincent BM, Kraemer WJ, Peterson MD. Muscle weakness and functional limitations in an ethnically diverse sample of older adults. Ethn Health. 2020;25(3):342–353. doi:https://doi.org/10.1080/13557858.2017.1418301.

    Article  PubMed  Google Scholar 

  47. Manini TM, Patel SM, Newman AB, et al. Identification of Sarcopenia Components That Discriminate Slow Walking Speed: A Pooled Data Analysis. J Am Geriatr Soc. 2020;68(7):1419–1428. doi:https://doi.org/10.1111/jgs.16524.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sallinen J, Stenholm S, Rantanen T, Heliövaara M, Sainio P, Koskinen S. Hand-grip strength cut points to screen older persons at risk for mobility limitation. J Am Geriatr Soc. 2010;58(9):1721–1726. doi:https://doi.org/10.1111/j.1532-5415.2010.03035.x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vasconcelos KS, Dias JM, Bastone Ade C, et al. Handgrip Strength Cutoff Points to Identify Mobility Limitation in Community-dwelling Older People and Associated Factors. J Nutr Health Aging. 2016;20(3):306–315. doi:https://doi.org/10.1007/s12603-015-0584-y.

    Article  PubMed  Google Scholar 

  50. Wang CY, Chen LY. Grip strength in older adults: test-retest reliability and cutoff for subjective weakness of using the hands in heavy tasks. Arch Phys Med Rehabil. 2010;91(11):1747–1751. doi:https://doi.org/10.1016/j.apmr.2010.07.225.

    Article  PubMed  Google Scholar 

  51. Su H, Sun X, Li F, Guo Q. Association between handgrip strength and cognition in a Chinese population with Alzheimer’s disease and mild cognitive impairment. BMC Geriatr. 2021;21(1):459. doi:https://doi.org/10.1186/s12877-021-02383-8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brown EC, Buchan DS, Madi SA, Gordon BN, Drignei D. Grip Strength Cut Points for Diabetes Risk Among Apparently Healthy U.S. Adults. Am J Prev Med. 2020;58(6):757–765. doi: https://doi.org/10.1016/j.amepre.2020.01.016.

    Article  PubMed  Google Scholar 

  53. Peterson MD, Zhang P, Choksi P, Markides KS, Al Snih S. Muscle Weakness Thresholds for Prediction of Diabetes in Adults. Sports Med. 2016;46(5):619–628. doi:https://doi.org/10.1007/s40279-015-0463-z.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Peterson MD, McGrath R, Zhang P, Markides KS, Al Snih S, Wong R. Muscle Weakness Is Associated With Diabetes in Older Mexicans: The Mexican Health and Aging Study. J Am Med Dir Assoc. 2016; 17(10): 933–938. doi: https://doi.org/10.1016/j.jamda.2016.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Garcia-Hermoso A, Tordecilla-Sanders A, Correa-Bautista JE, et al. Muscle strength cut-offs for the detection of metabolic syndrome in a nonrepresentative sample of collegiate students from Colombia. J Sport Health Sci. 2020;9(3):283–290. doi:https://doi.org/10.1016/j.jshs.2018.09.004.

    Article  PubMed  Google Scholar 

  56. Sénéchal M, McGavock JM, Church TS, et al. Cut points of muscle strength associated with metabolic syndrome in men. Med Sci Sports Exerc. 2014;46(8): 1475–1481. doi: https://doi.org/10.1249/MSS.0000000000000266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peterson MD, Zhang P, Duchowny KA, Markides KS, Ottenbacher KJ, Snih SA. Declines in Strength and Mortality Risk Among Older Mexican Americans: Joint Modeling of Survival and Longitudinal Data. J Gerontol A Biol Sci Med Sci. 2016;71(12):1646–1652. doi:https://doi.org/10.1093/gerona/glw051.

    Article  PubMed  PubMed Central  Google Scholar 

  58. McGrath R, Vincent BM, Peterson MD, et al. Weakness May Have a Causal Association With Early Mortality in Older Americans: A Matched Cohort Analysis. J Am Med Dir Assoc. 2020;21(5):621–626.e2. doi: https://doi.org/10.1016/j.jamda.2019.10.016.

    Article  PubMed  Google Scholar 

  59. Stuck AK, Mäder NC, Bertschi D, Limacher A, Kressig RW. Performance of the EWGSOP2 Cut-Points of Low Grip Strength for Identifying Sarcopenia and Frailty Phenotype: A Cross-Sectional Study in Older Inpatients. Int J Environ Res Public Health. 2021;18(7):3498. doi:https://doi.org/10.3390/ijerph18073498.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Abe T, Loenneke JP, Thiebaud RS, Loftin M. The Bigger the Hand, the Bigger the Difference? Implications for Testing Strength With 2 Popular Handgrip Dynamometers. J Sport Rehabil. 2019;28(3):278–282. doi:https://doi.org/10.1123/jsr.2017-0189.

    Article  PubMed  Google Scholar 

  61. Fallahi AA, Jadidian AA. The effect of hand dimensions, hand shape and some anthropometric characteristics on handgrip strength in male grip athletes and non-athletes. J Hum Kinet. 2011;29:151–159. doi:https://doi.org/10.2478/v10078-011-0049-2.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Amaral JF, Mancini M, Novo Júnior JM. Comparison of three hand dynamometers in relation to the accuracy and precision of the measurements. Rev Bras Fisioter. 2012;16(3):216–224. doi: https://doi.org/10.1590/s1413-35552012000300007.

    Article  PubMed  Google Scholar 

  63. McGrath R. Are we maximizing the utility of handgrip strength assessments for evaluating muscle function? Aging Clin Exp Res. 2021;33(6):1721–1723. doi:https://doi.org/10.1007/s40520-020-01689-8.

    Article  PubMed  Google Scholar 

  64. McGrath R. Maximal Handgrip Strength Alone Could Be an Incomplete Measure of Muscle Function. J Am Med Dir Assoc. 2021;22(4):882–883. doi:https://doi.org/10.1016/j.jamda.2021.01.062.

    Article  PubMed  Google Scholar 

  65. McGrath R, Tomkinson GR, Clark BC, et al. Assessing Additional Characteristics of Muscle Function With Digital Handgrip Dynamometry and Accelerometry: Framework for a Novel Handgrip Strength Protocol. J Am Med Dir Assoc. 2021;S1525-8610(21)00517-X. doi:https://doi.org/10.1016/j.jamda.2021.05.033.

  66. Alkurdi ZD, Dweiri YM. A biomechanical assessment of isometric handgrip force and fatigue at different anatomical positions. J Appl Biomech. 2010;26(2):123–133. doi:https://doi.org/10.1123/jab.26.2.123.

    Article  PubMed  Google Scholar 

  67. Ribeiro E Jr, Neave N, Morais RN, et al. Digit ratio (2D:4D), testosterone, Cortisol, aggression, personality and hand-grip strength: Evidence for prenatal effects on strength. Early Hum Dev. 2016;100:21–25. doi:https://doi.org/10.1016/j.earlhumdev.2016.04.003.

    Article  CAS  PubMed  Google Scholar 

  68. Patel SM, Duchowny KA, Kiel DP, et al. Sarcopenia Definition & Outcomes Consortium Defined Low Grip Strength in Two Cross-Sectional, Population-Based Cohorts. J Am Geriatr Soc. 2020;68(7):1438–1444. doi: https://doi.org/10.1111/jgs.16419.

    Article  PubMed  Google Scholar 

  69. Reijnierse EM, de Jong N, Trappenburg MC, et al. Assessment of maximal handgrip strength: how many attempts are needed?. J Cachexia Sarcopenia Muscle. 2017;8(3):466–474. doi:https://doi.org/10.1002/jcsm.12181.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mahoney SJ, Hackney KJ, Jurivich DA, Dahl LJ, Johnson C, McGrath R. Handgrip Strength Asymmetry Is Associated With Limitations in Individual Basic Self-Care Tasks. J Appl Gerontol. 2020;733464820982409. doi:https://doi.org/10.1177/0733464820982409.

  71. McGrath R, Cawthon PM, Cesari M, Al Snih S, Clark BC. Handgrip Strength Asymmetry and Weakness Are Associated with Lower Cognitive Function: A Panel Study. J Am Geriatr Soc. 2020;68(9):2051–2058. doi:https://doi.org/10.1111/jgs.16556.

    Article  PubMed  Google Scholar 

  72. Auyeung TW, Arai H, Chen LK, Woo J. Letter to the editor: Normative data of handgrip strength in 26344 older adults — a pooled dataset from eight cohorts in Asia. J Nutr Health Aging. 2020;24(1):125–126. doi:https://doi.org/10.1007/s12603-019-1287-6.

    Article  CAS  PubMed  Google Scholar 

  73. Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21(3):300–307.e2. doi: https://doi.org/10.1016/j.jamda.2019.12.012.

    Article  PubMed  Google Scholar 

  74. Dufner TJ, Fitzgerald JS, Lang JJ, Tomkinson GR. Temporal Trends in the Handgrip Strength of 2,592,714 Adults from 14 Countries Between 1960 and 2017: A Systematic Analysis. Sports Med. 2020;50(12):2175–2191. doi:https://doi.org/10.1007/s40279-020-01339-z.

    Article  PubMed  Google Scholar 

  75. Tomkinson GR, Kidokoro T, Dufner T, Noi S, Fitzgerald JS, McGrath RP. Temporal trends in handgrip strength for older Japanese adults between 1998 and 2017. Age Ageing. 2020;49(4):634–639. doi:https://doi.org/10.1093/ageing/afaa021

    Article  CAS  PubMed  Google Scholar 

  76. Hughes RG, Beene MS, Dykes PC. The significance of data harmonization for credentialing research. NAM Perspectives, https://nam.edu/wp-content/uploads/2015/06/CredentialingDataHarmonization.pdf. Accessed 28 Jan 2022.

  77. National Institutes of Health Office of Research on Women’s Health. NIH Policy on Sex as a Biological Variable. https://orwh.od.nih.gov/sex-gender/nih-policy-sex-biologjcal-variable. Accessed 9 Dec 2021.

  78. Looijaard SMLM, Oudbier S J, Reijnierse EM, Blauw GJ, Meskers CGM, Maier AB. Single Physical Performance Measures Cannot Identify Geriatric Outpatients with Sarcopenia. J Frailty Aging. 2018;7(4):262–267. doi:https://doi.org/10.14283/jfa.2018.19

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cuenca-Garcia M, Marin-Jimenez N, Perez-Bey A, et al. Reliability of Field-Based Fitness Tests in Adults: A Systematic Review. Sports Med. 2022;https://doi.org/10.1007/s40279-021-01635-2. doi:https://doi.org/10.1007/s40279-021-01635-2

  80. Ibrahim K, May CR, Patel HP, Baxter M, Sayer AA, Roberts HC. Implementation of grip strength measurement in medicine for older people wards as part of routine admission assessment: identifying facilitators and barriers using a theory-led intervention. BMC Geriatr. 2018;18(1):79. doi:https://doi.org/10.1186/s12877-018-0768-5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

Funding: RAF is partially supported by the United States Department of Agriculture, under agreement No. S8-80S0-9-004, and by NIH Boston Claude D. Pepper Center (OAIC; 1P30AG031679). Any opinions, findings, conclusions, or recommendations expressed in this article may not specifically be those of certain authors and do not necessarily reflect the views of the United States Department of Agriculture. BCC is partially support by grants from the NIH (NIA R01AG044424 and R01AG067758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan McGrath.

Ethics declarations

Conflicts of Interest: RAF reports grants from Biophytis, Axcella Health, Regeneron, Lonza, and Nestlé; consulting income from Pfizer, Biophytis, and Nestlé; stock options in Inside Tracker and stock in Axcella Health. BCC reports grants from NMD Pharma and NIH, and consulting income from Regeneron Pharmaceuticals.

Ethical Standards: Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGrath, R., Cawthon, P.M., Clark, B.C. et al. Recommendations for Reducing Heterogeneity in Handgrip Strength Protocols. J Frailty Aging 11, 143–150 (2022). https://doi.org/10.14283/jfa.2022.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jfa.2022.21

Key words

Navigation