Skip to main content
Log in

Lebesgue type decompositions for linear relations and Ando’s uniqueness criterion

  • Published:
Acta Scientiarum Mathematicarum Aims and scope Submit manuscript

Abstract

A linear relation, i. e., a multivalued operator T from a Hilbert space H to a Hilbert space K has Lebesgue type decompositions T T1 is a closable operator and T2 is an operator or relation which is singular. There is one canonical decomposition, called the Lebesgue decomposition of T, whose closable part is characterized by its maximality among all closable parts in the sense of domination. All Lebesgue type decompositions are parametrized, which also leads to necessary and sufficient conditions for the uniqueness of such decompositions. Similar results are given for weak Lebesgue type decompositions, where T1 is just an operator without being necessarily closable. Moreover, closability is characterized in different useful ways. In the special case of range space relations the above decompositions may be applied when dealing with pairs of (nonnegative) bounded operators and nonnegative forms as well as in the classical framework of positive measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Achieser and I.M. Glasman, Theorie der linearen Operatoren im Hilbertraum, 8th edition, Akademie Verlag, Berlin, 1981.

    Google Scholar 

  2. T. Ando, Lebesgue-type decomposition of positive operators, Acta Sci. Math. (Szeged), 38 (1976), 253–260.

    MathSciNet  MATH  Google Scholar 

  3. R. Arens, Operational calculus of linear relations, Pacific J. Math., 11 (1961), 9–23.

    Article  MathSciNet  Google Scholar 

  4. Yu. Arlinski˘ı, On the mappings connected with parallel addition of nonnegative operators, Positivity, 21 (2017), 299–327.

    Article  MathSciNet  Google Scholar 

  5. J. Behrndt, S. Hassi, H.S.V. de Snoo and R. Wietsma, Monotone convergence theorems for semibounded operators and forms with applications, Proc. Royal Soc. Edinburgh, 140A (2010), 927–951.

    Article  Google Scholar 

  6. P. Fillmore and J. Williams, On operator ranges, Adv. Math., 7 (1971), 254–281.

    Article  MathSciNet  Google Scholar 

  7. I. Gohberg and M. G. Kre˘ın, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspekhi Mat. Nauk., 12 (1957), 43–118 (Russian) [English translation: Transl. Amer. Math. Soc. (2), 13 (1960), 185–264].

  8. S. Hassi, A. Sandovici, H.S.V. de Snoo and H. Winkler, Form sums of nonnegative selfadjoint operators, Acta Math. Hungar., 111 (2006), 81–105.

    Article  MathSciNet  Google Scholar 

  9. S. Hassi, Z. Sebestyén and H.S.V. de Snoo, Domain and range descriptions for adjoint relations, and parallel sums and differences of forms, Oper. Theory Adv. Appl., 198 (2009), 211–227.

    MathSciNet  MATH  Google Scholar 

  10. S. Hassi, Z. Sebestyén and H.S.V. de Snoo, Lebesgue type decompositions for nonnegative forms, J. Functional Analysis, 257 (2009), 3858–3894.

    Article  MathSciNet  Google Scholar 

  11. S. Hassi, Z. Sebestyén, H.S.V. de Snoo and F.H. Szafraniec, A canonical decomposition for linear operators and linear relations, Acta Math. Hungarica, 115 (2007), 281–307.

    Article  MathSciNet  Google Scholar 

  12. S. Hassi and H.S.V. de Snoo, Factorization, majorization, and domination for linear relations, Annales Univ. Sci. Budapest, 58 (2015), 53–70.

    MathSciNet  MATH  Google Scholar 

  13. S. Hassi and H.S.V. de Snoo, Lebesgue type decompositions and Radon-Nikodym derivatives for pairs of bounded linear operators, in preparation.

  14. S. Hassi, H.S.V. de Snoo and F.H. Szafraniec, Componentwise and Cartesian decompositions of linear relations, Dissertationes Mathematicae, 465 (2009), 59 pages.

    Article  MathSciNet  Google Scholar 

  15. S. Izumino, Decomposition of quotients of bounded operators with respect to closability and Lebesgue-type decomposition of positive operators, Hokkaido Math. J., 18 (1989), 199–209.

    Article  MathSciNet  Google Scholar 

  16. P.E.T. Jorgensen, Unbounded operators; perturbations and commutativity problems, J. Functional Analysis, 39 (1980), 281–307.

    Article  MathSciNet  Google Scholar 

  17. T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1980.

    MATH  Google Scholar 

  18. S. Ôta, Decomposition of unbounded derivations in operator algebras, Tôhoku Math. J., 33 (1981), 215–225.

    Article  MathSciNet  Google Scholar 

  19. S. Ôta, Closed linear operators with domain containing their range, Proc. Edinburgh Math. Soc., 27 (1984), 229–233.

    Article  MathSciNet  Google Scholar 

  20. S. Ôta, On a singular part of an unbounded operator, Zeitschrift für Analysis und ihre Anwendungen, 7 (1987), 15–18.

    Article  MathSciNet  Google Scholar 

  21. D. Popovici and Z. Sebestyén, Factorizations of linear relations, Adv. Math., 233 (2013), 40–55.

    Article  MathSciNet  Google Scholar 

  22. Z. Sebestyén, Zs. Tarcsay and T. Titkos, Lebesgue decomposition theorems, Acta Sci. Math. (Szeged), 79 (2013), 219–233.

    Article  MathSciNet  Google Scholar 

  23. Z. Sebestyén, Zs. Tarcsay and T. Titkos, A short-type decomposition of forms, Operators Matrices, 9 (2015), 815–830.

    Article  MathSciNet  Google Scholar 

  24. B. Simon, A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Functional Analysis, 28 (1978), 377–385.

    Article  MathSciNet  Google Scholar 

  25. M.H. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloquium Publications, Vol. 15, Amer. Math. Soc., 1932.

    Book  Google Scholar 

  26. Zs. Tarcsay, Lebesgue-type decomposition of positive operators, Positivity, 17 (2013), 803–817.

    Article  MathSciNet  Google Scholar 

  27. Zs. Tarcsay, Radon–Nikodym theorems for nonnegative forms, measures and representable functionals, Complex Anal. Oper. Theory, 10 (2016), 479–494.

    Article  MathSciNet  Google Scholar 

  28. T. Titkos, Arlinskii’s iteration and its applications, Proc. Edinburgh Math. Soc., pp. 9; doi: 10. 1017/S0013091518000287.

  29. J. Weidmann, Lineare Operatoren im Hilberträumen, B.G. Teubner, Stuttgart, 1976.

    MATH  Google Scholar 

  30. D. Werner, Funktionalanalysis, 3. Auflage, Springer, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seppo Hassi.

Additional information

Communicated by L. Molnár

To Professor Ando on the occasion of his 85th birthday

The research was partially supported by a grant from the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassi, S., Sebestyén, Z. & de Snoo, H. Lebesgue type decompositions for linear relations and Ando’s uniqueness criterion. ActaSci.Math. 84, 465–507 (2018). https://doi.org/10.14232/actasm-018-757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14232/actasm-018-757-0

AMS Subject Classification (2010)

Key words and phrases

Navigation