Skip to main content
Log in

Graphical models, regression graphs, and recursive linear regression in a unified way

  • Published:
Acta Scientiarum Mathematicarum Aims and scope Submit manuscript

Abstract

This versatile topic goes back to the inventions of Gauss, Markov, and Gibbs, whose ideas are incorporated in graphical models and regression graphs. Later, the geneticist S. Wright (1923–1934) and the philosopher and computer scientist J. Pearl (1986–1987) developed the tools, but their notation is too complicated to formulate the mathematical background. Here we mainly follow the up-to-date discussion of statisticians S. Lauritzen and N. Wermuth, and try to juxtapose the directed–undirected and discrete–continuous cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

An(A):

ancestral set of the vertex-set A, which is the smallest possible vertex-set (including A) containing all vertices from where a directed path emanates to vertices of A in a directed graph

ant(i):

anteriors of the vertex i in a directed graphs (non-descendants except its parents)

bd(i):

boundary of the vertex i (its neighbors in the undirected, and its parents in the directed case)

BN:

Bayesian Network

CG:

Conditional Gaussian

cl(i):

closure of the vertex i (it and its biundary)

DAG:

Directed Acyclic Graph

DF:

Directed Factorization Property

DG:

Directed Global Markov Property

DL:

Directed Local Markov Property

DP:

Directed Pairwise Markov Property

EDHS:

Egypt Demographic and Health Survey

iid:

independent identically distributed

IPS:

Iterative Proportional Scaling

JT:

Junction Tree

MCS:

Maximal Cardinality Search

ML:

Maximum Likelihood

MRF:

Markov Random Field

par(i):

parents of the vertex i (from where directed edge shows to it) in a directed graph

pdf:

Probability Density Function

pmf:

Probability Mass Function

RCF:

Recursive Casual Factorization

RIP:

Running Intersection Property

rv:

random variable

RZP:

Reducible Zero Pattern

SEM:

Structural Equation Modeling

UF:

Undirected Factorization Property

UG:

Undirected Global Markov Property

UL:

Undirected Local Markov Property

UP:

Undirected Pairwise Markov Property

References

  1. M. Bolla, Spectral Clustering and Biclustering. Learning Large Graphs and Contingency Tables, Wiley, 2013.

    Book  Google Scholar 

  2. L. Breiman and J. H. Friedman, Estimating optimal transformations for multiple regression and correlation, J. Am. Stat. Assoc., 80 (1985), 580–619.

    Article  MathSciNet  Google Scholar 

  3. C. K. Chow and C. N. Liu, Approximating discrete probability distributions with dependence trees, IEE. Trans. Inf. Theory, IT-14 (1968), 452–467.

    MATH  Google Scholar 

  4. W. G. Cochran, The omission or addition of an independent variate in multiple linear regression, J. R. Statist. Soc., suppl. 5 (1938), 171–176.

    MATH  Google Scholar 

  5. D. R. Cox and N. Wermuth, Multivariate Dependencies. Models, analysis and interpretation, Chapman&Hall/CRC, 1996.

    MATH  Google Scholar 

  6. J. N. Darroch, S. L. Lauritzen and T. P. Speed, Markov Fields and Log- Linear Interaction Models for Contingency tables, The Annals of Statistics, 8 (1980), 522–539.

    Article  MathSciNet  Google Scholar 

  7. A. P. Dempster, Covariance selection, Biometrics, 28 (1972), 157–175.

    Article  MathSciNet  Google Scholar 

  8. L. Győrfi, et al., A distribution-free theory of nonparametric regression, Springer Science & Business Media, 2006.

    Google Scholar 

  9. K. G. Jöreskog, Structural equation models in the social sciences, Specification, estimation and testing (1977), Applications of statistics, ed.: P. R. Krishnaiah, North-Holland Publishing Co., 265–287.

    Google Scholar 

  10. H. Kiiveri, T. P. Speed and J. B. Carlin, Recursive casual models, J. Austral. Math. Soc. (Ser. A), 36 (1984), 30–52.

    Article  MathSciNet  Google Scholar 

  11. D. Koller and N. Friedman, Probabilistic Graphical Models. Principles and Techniques, MI. Press, 2009.

    MATH  Google Scholar 

  12. S. L. Lauritzen, T. P. Speed and K. Vijayan, Decomposable graphs and hypergraphs, J. Austral. Math. Soc. (Ser A), 36 (1984), 12–29.

    Article  MathSciNet  Google Scholar 

  13. S. L. Lauritzen and D. Spiegelhalter, Local computations with probabilities on graphical structures and their application in expert systems, J. R. Statist. Soc. B, 50 (1988), 157–224.

    MATH  Google Scholar 

  14. S. L. Lauritzen, Graphical Models, Oxford Univ. Press, 1995.

    MATH  Google Scholar 

  15. L. Lovász, Combinatorial problems and exercises, ACM. Akademiai Kiado–North Holland, Budapest–Amsterdam, 1993.

    MATH  Google Scholar 

  16. R. Lnenicka and F. Matus, On Gaussian conditional independence structutes, Kybernetika, 43 (2007), 323–342.

    MATH  Google Scholar 

  17. F. T. Móri and J. G. Székely, Többváltozós statisztikai analízis, Műszaki Konyvkiado, Budapest, 1986 (in Hungarian, Chapter XI. by T. Rudas).

    Google Scholar 

  18. E. A. Nadaraya, On nonparametric estimates of regression functions and regression curves, Theory of Applied Probability, 10 (1965), 186–190.

    Article  Google Scholar 

  19. J. Pearl, Causality: Models, Reasoning and Inference, Cambridge Univ. Press, 2000.

    MATH  Google Scholar 

  20. D. J. Rose, R. E. Tarjan and G. S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIA. Journal of Computing, 5 (1976), 266–283.

    Article  MathSciNet  Google Scholar 

  21. R. Sundberg, Some results about decomposable (or Markov-type) models for multidimensional contingency tables: distribution of marginals and partitioning of tests, Scandinavian Journal of Statistics, 2 (1975), 71–79.

    MathSciNet  MATH  Google Scholar 

  22. T. Szántai and E. Kovács, Application of t-cherry trees in pattern recognition, Broad Research in Artificial Intelligence and Neuroscience (BRAIN), eds.: B. Iantovics, D. Radoiu, M. Marusteri, M. Dehmer, special issue on Complexity in Sciences and Artificial Intelligence, 2010, 40–45.

    Google Scholar 

  23. R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs, Siam J. Computing, 13 (1984), 566–579.

    Article  MathSciNet  Google Scholar 

  24. M. Tenenhaus, V. Esposito Vinzi, Y.-L. Chatelinc and C. Lauro, PL. path modeling, Computational Statistics & Data Analysis, 48 (2005), 159–205.

    Article  MathSciNet  Google Scholar 

  25. M. J. Wainwright, Graphical Models and Message-Passing Algorithms: Some Introductory Lectures, Mathematical Foundations of Complex Networked Iformation Systems, Lecture Notes in Mathematics 2141, Springer, 2015.

    MATH  Google Scholar 

  26. M. Wainwright and M. I. Jordan, Graphical models, exponential families, and variational inference, Foundations and Trends in Machine Learning, 1 (2008), 1–305.

    Article  Google Scholar 

  27. G. S. Watson, Smooth regression analysis, Sankhya, 26 (1964), 359–372.

    MathSciNet  MATH  Google Scholar 

  28. N. Wermuth, Recursive equations, covariance selection, and path analysis, J. Amer. Stat. Assoc., 75 (1980), 963–972.

    Article  MathSciNet  Google Scholar 

  29. N. Wermuth, Traceable regressions, International Statistical Review, 80 (2012), 415–438.

    Article  MathSciNet  Google Scholar 

  30. N. Wermuth and K. Sadeghi, Sequences of regressions and their independences, TEST, 21 (2012), 215–279.

    Article  MathSciNet  Google Scholar 

  31. N. Wermuth, Graphical Markov models, unifying results and their interpretation, Wiley StatsRef: Statistics Reference Online, eds.: N. Balakrishnan, et al., 2015, also available at arXiv: 1505. 02456.

    Google Scholar 

  32. N. Wermuth and D. R. Cox, Graphical Markov models: Overview, International Encyclopedia of the Social and Behavioral Sciences 10, 2nd ed., (eds.: J. Wright), Elsevier, Oxford, 2015, 341–350; also available at arXiv: 1407. 7783.

    Chapter  Google Scholar 

  33. S. Wright, The method of path coefficients, Ann. Math. Stat., 5 (1934), 161–215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Bolla.

Additional information

Dedicated to the memory of András Krámli

Communicated by Gy. Pap

Acknowledgment.

The first author is indebted to NannyWermuth for her valuable explanations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolla, M., Abdelkhalek, F. & Baranyi, M. Graphical models, regression graphs, and recursive linear regression in a unified way. ActaSci.Math. 85, 9–57 (2019). https://doi.org/10.14232/actasm-018-331-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14232/actasm-018-331-4

AMS Subject Classification

Key words and phrases

Navigation