Skip to main content
Log in

Uniqueness of the numerical range of truncated shifts

  • Published:
Acta Scientiarum Mathematicarum Aims and scope Submit manuscript

Abstract

Let ϑH be an inner function with two spectral points on the unit circle T, and let us consider the numerical range W(S(ϑ)) of the truncated shift S(ϑ). The question, whether the shape of W(S(ϑ)) determines ϑ, is studied. Several conditions are given, when this is true, reducing the problem to a particular case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Agler and J. E. McCarthy, Pick interpolation and Hilbert function spaces, Amer. Math. Soc., Providence, Rhode Island, 2002.

    Book  Google Scholar 

  2. P. R. Ahern and D. N. Clark, Radial limits and invariant subspaces, Amer. J. Math., 92 (1970), 332–342.

    Article  MathSciNet  Google Scholar 

  3. N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Dover Publications, Inc., New York, 1993.

    MATH  Google Scholar 

  4. N. Aronszajn and W. F. Donoghue, Jr., On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. Analyse Math., 5 (1956), 321–385.

    Article  Google Scholar 

  5. N. Aronszajn and W. F. Donoghue, Jr., A supplement to the paper on exponential representations, J. Analyse Math., 12 (1964), 113–127.

    Article  MathSciNet  Google Scholar 

  6. H. Bercovici, Operator theory and arithmetic in H1, Mathematical Surveys and Monographs 26, Amer. Math. Soc., Providence, Rhode Island, 1988.

    Book  Google Scholar 

  7. H. Bercovici and D. Timotin, Factorizations of analytic self-maps of the upper half-plane, Ann. Acad. Sci. Fenn. Math., 37 (2012), 649–660.

    Article  MathSciNet  Google Scholar 

  8. H. Bercovici and D. Timotin, The numerical range of a contraction with finite defect numbers, J. Math. Anal. Appl., 417 (2014), 42–56.

    Article  MathSciNet  Google Scholar 

  9. I. Chalendar, P. Gorkin and J. R. Partington, Determination of inner functions by their value sets on the circle, Computational Methods and Function Theory, 11 (2011), 353–373.

    Article  MathSciNet  Google Scholar 

  10. W. F. Donoghue, Jr., Monotone matrix functions and analytic continuation, Springer-Verlag, Berlin–Heidelberg–New York, 1974.

    Book  Google Scholar 

  11. R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York–London, 1972.

    MATH  Google Scholar 

  12. H.-L. Gau and P. Y. Wu, Numerical range of S(φ), Linear and Multilinear Algebra, 45 (1998), 49–73.

    Article  MathSciNet  Google Scholar 

  13. H.-L. Gau and P. Y. Wu, Numerical range and the Poncelet property, Tai-wanese J. Math., 7 (2003), 173–193.

    MathSciNet  MATH  Google Scholar 

  14. F. Gesztesy and E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr., 218 (2000), 61–138.

    Article  MathSciNet  Google Scholar 

  15. K. E. Gustafson and D. K. M. Rao, Numerical range.The field of values of linear operators and matrices, Springer-Verlag, New York, 1997.

    Google Scholar 

  16. P. R. Halmos, A Hilbert space problem book, Springer-Verlag, New York–Heidelberg–Berlin, 1982.

    Book  Google Scholar 

  17. K. Hoffman, Banach spaces of analytic functions, Dover Publications, Inc., New York, 1988.

    MATH  Google Scholar 

  18. L. Kérchy, Quasianalytic polynomially bounded operators, Operator Theory: the State of the Art, Theta, Bucharest, 2016, 75–101.

    Google Scholar 

  19. B. Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs 150, Amer. Math. Soc., Providence, Rhode Island, 1996.

    Book  Google Scholar 

  20. R. A. Martinez-Avendano and P. Rosenthal, An introduction to operators on the Hardy–Hilbert space, Springer, New York, 2007.

    MATH  Google Scholar 

  21. J. Mashreghi, Derivatives of inner functions, Fields Institute Monographs 31, Springer, New York, 2013.

    Book  Google Scholar 

  22. B. Sz.-Nagy, C. Foias, H. Bercovici and L. Kérchy, Harmonic analysis of operators on Hilbert space, Revised and enlarged edition, Universitext, Springer, New York, 2010.

    Book  Google Scholar 

  23. N. K. Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1986.

    Book  Google Scholar 

  24. M. Rosenblum and J. Rovnyak, Topics in Hardy classes and univalent functions, Springer, Basel AG, 1994.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Kérchy.

Additional information

Communicated by V. Totik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kérchy, L. Uniqueness of the numerical range of truncated shifts. ActaSci.Math. 83, 243–261 (2017). https://doi.org/10.14232/actasm-016-052-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14232/actasm-016-052-0

AMS Subject Classification

Key words and phrases

Navigation