Skip to main content
Log in

An infinite family of multiplicatively independent bases of number systems in cyclotomic number fields

  • Published:
Acta Scientiarum Mathematicarum Aims and scope Submit manuscript

Abstract

Let ζk be a k-th primitive root of unity, m ≥ø(k) + 1 an integer and Φk(X) ∈ ℤ[X] the k-th cyclotomic polynomial. In this paper we show that the pair (-mk,N) is a canonical number system, with N = {0,1,...,|Φk(m)|-1}. Moreover we also discuss whether the two bases -m + ζk and -n + ζk are multiplicatively independent for positive integers m, n and k fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akiyama and A. Pethő, On canonical number systems, Theoret. Comput. Sci., 270 (2002), 921–933.

    Article  MathSciNet  Google Scholar 

  2. H. Brunotte, A unified proof of two classical theorems on CNS polynomials, Integers, 12 (2012), 709–721.

    Article  MathSciNet  Google Scholar 

  3. Y. Bugeaud, G. Hanrot and M. Mignotte, Sur l’équation diophantienne (x>n> - 1)/(x - 1) = yq. III, Proc. London Math. Soc. (3), 84 (2002), 59–78

    Article  MathSciNet  Google Scholar 

  4. K. Chao, On the Diophantine equation x2 = yn + 1, xy = 0, Sci. Sinica, 14 (1965), 457–460.

    MathSciNet  Google Scholar 

  5. A. Cobham, Uniform tag sequences, Math. Systems Theory, 6 (1972), 164–192.

    Article  MathSciNet  Google Scholar 

  6. W. J. Gilbert, Radix representations of quadratic fields, J. Math. Anal. Appl., 83 (1981), 264–274.

    Article  MathSciNet  Google Scholar 

  7. G. Hansel and T. Safer, Vers un théorème de Cobham pour les entiers de Gauss, Bull. Belg. Math. Soc. Simon Stevin, 10 suppl. (2003), 723–735.

    Article  MathSciNet  Google Scholar 

  8. I. Kátai and B. Kovács, Kanonische Zahlensysteme in der Theorie der quadratischen algebraischen Zahlen, Acta Sci. Math. (Szeged), 42 (1980), 99–107.

    MathSciNet  MATH  Google Scholar 

  9. I. Kátai and B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math. Acad. Sci. Hungar., 37 (1981), 159–164.

    Article  MathSciNet  Google Scholar 

  10. I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged), 37 (1975), 255–260.

    MathSciNet  MATH  Google Scholar 

  11. D. E. Knuth, The art of computer programming, second edition, Vol. 2, Seminumerical algorithms, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981.

    MATH  Google Scholar 

  12. B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar., 37 (1981), 405–407.

    Article  MathSciNet  Google Scholar 

  13. B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. (Szeged), 55 (1991), 287–299.

    MathSciNet  MATH  Google Scholar 

  14. F. Luca, S. Tengely and A. Togbé, On the Diophantine equation x2 + C = 4yn, Ann. Sci. Math. Québec, 33 (2009), 171–184.

    MathSciNet  MATH  Google Scholar 

  15. P. Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math., 572 (2004), 167–195.

    MathSciNet  MATH  Google Scholar 

  16. A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, 31–43.

    Chapter  Google Scholar 

  17. A. Schinzel and R. Tijdeman, On the equation ym = P(x), Acta Arith., 31 (1976), 199–204.

    Article  MathSciNet  Google Scholar 

  18. T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, Cambridge Tracts in Mathematics 87, Cambridge University Press, Cambridge, 1986.

    Book  Google Scholar 

Download references

Acknowledgements

The authors want to thank Shigeki Akiyama (University of Tsukuba) for pointing them to the refinement of Petho [16, Theorem 7.1] and Julien Bernat (Université de Lorraine) for many valuable discussions concerning Cobham’s theorem and its requirements.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Czédli

Supported by the Austrian Science Fund (FWF) under the project P 24801-N26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madritsch, M.G., Ziegler, V. An infinite family of multiplicatively independent bases of number systems in cyclotomic number fields. ActaSci.Math. 81, 33–44 (2015). https://doi.org/10.14232/actasm-013-825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14232/actasm-013-825-5

Key words and phrases

AMS Subject Classifications

Navigation