Skip to main content

Advertisement

Log in

Functional nanomaterials for water purification

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Nanomaterials show a better performance in environmental remediation than other conventional materials because of their high surface area and their associated high reactivity. Nanostructured photocatalysts, especially TiO2, are widely studied for the treatment of contaminated water. They can indeed degrade organic pollutants and microorganisms. In the first part of this review, the fundamentals of heterogeneous photocatalysis are described, with particular attention to the most important recent progresses in the field of nanostructured TiO2 for water treatment. The strategies to improve its efficiency and to enhance its photo-catalytic performance in the visible region are also illustrated. However, although the nanoscaled catalysts show considerable improvement in terms of water purification efficiency, their size remains the main problem in a large-scale process because of the need of a post-treatment recovery, necessary to avoid their impact on the environment and human health. For this reason, the immobilization of photocatalysts on different substrates has been drawing a significant attention. Considering the various substrates, polymers seem to be very promising. The most recent developments in the applications of polymer-TiO2 nanocomposites for water purification are presented. Finally, the recent interest addressed to the use of molecularly imprinted polymers for wastewater treatment is discussed, showing preliminary results and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padmanabhan P. V. A., Sreekumar K. P., Thiyagarajan T. K., Satpute R. U., Bhanumurthy K., Sengupta P., Dey G. K. and Warrier K. G. K., Vacuum, 80 (2006) 11.

    Article  Google Scholar 

  2. Gaya U. I. and Abdullah A. H., J. Photochem. Photobiol. C: Photochem. Rev., 9 (2008) 1.

    Article  Google Scholar 

  3. Yang H. and Cheng H., Sep. Purif. Technol., 56 (2007) 392.

    Article  ADS  Google Scholar 

  4. Fujishima A. and Honda K., Nature, 238 (1972) 37.

    Article  ADS  Google Scholar 

  5. Frank S. N. and Bard A. J., J. Phys. Chem., 81 (1977) 1484.

    Article  Google Scholar 

  6. Krautler B. and Bard A. J., J. Am. Chem. Soc., 100 (1978) 5958.

    Google Scholar 

  7. Fujishima A., Rao T. N. and Tryk D. A., J. Photochem. Photobiol. C: Photochem. Rev., 1 (2000) 1.

    Article  Google Scholar 

  8. Houas A., Lachheb H., Ksibi M., Elaloui E., Guillard C. and Hermann J. M., Appl. Catal. B Environ., 31 (2001) 145.

    Article  Google Scholar 

  9. Chong M. N., Jin B., Chow C. W. K. and Saint C., Water Res., 44 (2010) 2997.

    Article  Google Scholar 

  10. Hu A. and Apblett A., Nanotechnology for water treatment and purification (Springer International Publishing, Switzerland) 2014.

    Book  Google Scholar 

  11. Carp O., Huisman C. L. and Reller A., Prog. Solid State Chem., 32 (2004) 33.

    Article  Google Scholar 

  12. Diebold U., Surf. Sci. Rep., 48 (2003) 53.

    Article  ADS  Google Scholar 

  13. Luttrell T., Sci. Rep. (2014) DOI: 10.1038/srep04043.

  14. Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M. and Lu G. Q., Nature, 453 (2008) 638.

    Article  ADS  Google Scholar 

  15. D’Arienzo M., Carbajo J., Bahamonde A., Crippa M., Polizzi S., Scotti R., Wahba L. and Morazzoni F., J. Am. Chem. Soc., 133 (2011) 17652.

    Article  Google Scholar 

  16. Han X., Kuang Q., Jin M., Xie Z. and Zheng L., J. Am. Chem. Soc., 131 (2009) 3152.

    Article  Google Scholar 

  17. Yang H. G., Liu G., Qiao S. Z., Sun C. H., Jin Y. G., Smith S. C., Zou J., Cheng H. M. and Lu G. Q., J. Am. Chem. Soc., 131 (2009) 4078.

    Article  Google Scholar 

  18. Gordon T. R., Cargnello M., Paik T., Mangolini F., Weber R. T., Fornasiero P. and Murray C. B., J. Am. Chem. Soc., 134 (2012) 6751.

    Article  Google Scholar 

  19. Xiang Q., Lv K. and Yua J., Appl. Catal. B, 95 (2010) 557.

    Article  Google Scholar 

  20. Etacheri V., Di Valentin C., Schneider J., Bahnemann D. and Pillai S., J. Photochem. Photobiol. C: Photochem. Rev., 25 (2015) 1.

    Article  Google Scholar 

  21. Matsunaga T., Tomoda R., Nakajima T. and Wake H., FEMS Microbiol. Lett., 29 (1985) 211.

    Article  Google Scholar 

  22. Zimbone M., Buccheri M. A., Cacciato G., Sanz R., Rappazzo G., Boninelli S., Reitano R., Romano L., Privitera V. and Grimaldi M. G., Appl. Catal. B, 165 (2015) 487.

    Article  Google Scholar 

  23. Ibanez J. A., Litter M. I. and Pizarro R. A., J. Photochem. Photobiol. A Chem., 157 (2003) 81.

    Article  Google Scholar 

  24. Cho M., Chung H., Choi W. and Yoon J., Water Res., 38 (2004) 1069.

    Article  Google Scholar 

  25. Pelaez M., Nolan N. T., Pillai S. C., Seery M. K., Falaras P., Kontos A. G., Dunlop P. S. M., Hamilton J. W. J., Byrne J. A. and Dionysiou D. D., Appl. Catal. B: Environ., 125 (2012) 331.

    Article  Google Scholar 

  26. Reddy P. A. K., Reddy P. V. L., Kwon E., Kim K. H., Akter T. and Kalagara S., Environ. Int., 91 (2016) 94.

    Article  Google Scholar 

  27. Dong H., Zeng G., Tang L., Fan C., Zhang C., He X. and He Y., Water Res., 79 (2015) 128.

    Article  Google Scholar 

  28. Impellizzeri G., Scuderi V., Romano L., Sberna P., Arcadipane E., Sanz R., Simone F. and Privitera V., J. Appl. Phys., 116 (2014) 173507.

    Article  ADS  Google Scholar 

  29. Scuderi V., Impellizzeri G., Romano L., Scuderi M., Brundo M. V., Bergum K., Zimbone M., Sanz R., Buccheri M. A., Simone F., Nicotra G., Svensson B. G., Grimaldi M. G. and Privitera V., Nanoscale, 6 (2014) 11189.

    Article  ADS  Google Scholar 

  30. Wang W., Zhang J., Chen F., He D. and Anpo M. J., Colloid. Interface Sci., 323 (2008) 182.

    Article  ADS  Google Scholar 

  31. Ambrus Z., Balasz N., Alapi T., Wittmann G., Sipos P., Dombi A. and Mogyorosi K., Appl. Catal. B, 81 (2008) 27.

    Article  Google Scholar 

  32. Tong T., Zhang J., Tian B., Chen F. and He D. J., Hazard. Mater., 155 (2008) 572.

    Article  Google Scholar 

  33. Impellizzeri G., Scuderi V., Romano L., Napolitani E., Sanz R., Carles R. and Privitera V., J. Appl. Phys., 117 (2015) 105308.

    Article  ADS  Google Scholar 

  34. Zaleska A., Recent Pat. Eng., 2 (2008) 157.

    Article  Google Scholar 

  35. Irie H., Watanabe Y. and Hashimoto K., J. Phys. Chem. B, 107 (2003) 5483.

    Article  Google Scholar 

  36. Lindgren T., Mwabora J. M., Avandano E., Jonsson J., Hoel A., Granqcist C. G. and Lindquist S. E., J. Phys. Chem. B, 107 (2003) 5709.

    Article  Google Scholar 

  37. Pichat P., Photocatalysis and Water Purification: from fundamentals to recent applications, first edition (Wiley-VCH Verlag GmbH & Co) 2013.

  38. Abe R., Sayama K. and Arakawa H., Chem. Phys. Lett., 362 (2002) 441.

    Article  ADS  Google Scholar 

  39. Wang Y., He Y., Lai Q. and Fan M., J. Environ. Sci., 26 (2014) 2139.

    Article  Google Scholar 

  40. Scuderi V., Impellizzeri G., Zimbone M., Sanz R., Di Mauro A., Buccheri M. A., Miritello M., Terrasi A., Rappazzo G., Nicotre G. and Privitera V., Appl. Catal. B, 183 (2016) 328.

    Article  Google Scholar 

  41. Scuderi V., Impellizzeri G., Romano L., Scuderi M., Nicotra G., Bergum K., Irrera A., Svensson B. G. and Privitera V., Nanoscale Res. Lett., 9 (2014) 458.

    Article  ADS  Google Scholar 

  42. Convertino A., Maiolo L., Scuderi V., Di Mauro A., Scuderi M., Nicotra G., Impellizzeri G., Fortunato G. and Privitera V., RSC Advances, 6 (2016) 91121.

    Article  Google Scholar 

  43. Schultz A. G., Boyle D., Chamot D., Ong K. J., Wilkinson K. J., McGeer J. C., Sunahara G. and Goss G. G., Environ. Chem., 11 (2014) 207.

    Article  Google Scholar 

  44. Walters C. R., Pool E. J. and Somerset V. S., J. Environ. Sci. Health. Part A, 49 (2014) 1588.

    Article  Google Scholar 

  45. Kwak J. I. and An Y. J., Int. J. Environ. Sci. Technol., 12 (2015) 1163.

    Article  Google Scholar 

  46. Fernandez-Ibanez P., Blanco J., Malato S. and De Las Nieves F. J., Water Res., 37 (2003) 3180.

    Article  Google Scholar 

  47. Lee S. A., Choo K. H., Lee C. H., Lee H. I., Hyeon T., Choi W. and Kwon H. H., Ind. Eng. Chem. Res., 40 (2001) 1712.

    Article  Google Scholar 

  48. Molinari R., Palmisano L., Drioli E. and Schiavello M., J. Memb. Sci., 206 (2002) 399.

    Article  Google Scholar 

  49. Di Mauro A., Cantarella M., Nicotra G., Scuderi M., Brundo M. V., Privitera V. and Impellizzeri G., Sci. Rep., 7 (2017) 40895.

    Article  Google Scholar 

  50. Di Mauro A., Cantarella M., Nicotra G., Privitera V. and Impellizzeri G., Appl. Catal. B, 196 (2016) 68.

    Article  Google Scholar 

  51. Shan A. Y., Ghazi T. I. M. and Rashid S. A., Appl. Catal A, 389 (2010) 1.

    Article  Google Scholar 

  52. Singh S., Mahalingam H. and Singh P. K., Appl. Catal A, 462 (2013) 178.

    Article  Google Scholar 

  53. Fabiyi M. E. and Skelton R. L., J. Photochem. Photobiol. A, 132 (2000) 121.

    Article  Google Scholar 

  54. Magalhaes F., Moura F. C. C. and Lago R. M., Desalination, 276 (2011) 266.

    Article  Google Scholar 

  55. Kim H., Hong H. J., Jung J., Kim S. H. and Yang J. W., J. Hazard. Mater., 176 (2010) 1038.

    Article  Google Scholar 

  56. Chen Y., Stathatos E. and Dionysiou D. D., Surf. Coat. Technol., 202 (2008) 1944.

    Article  Google Scholar 

  57. Balasubramanian G., Dionysiou D. D., Suidan M. T., Baudin I. and Laine J. M., Appl. Catal. B: Environ., 47 (2004) 73.

    Article  Google Scholar 

  58. Liu A. and Chen X., J. Chem. Technol. Biotechnol., 82 (2007) 453.

    Article  Google Scholar 

  59. Djosic M. S., Miskovic-Stankovic V. B., Janackovic D. T., Kacarevic-Popovic Z. M. and Petrovic R. D., Colloids Surf. A, 274 (2006) 185.

    Article  Google Scholar 

  60. Langlet M., Kim A., Audier M. and Hermann J. M., J. Sol-Gel Sci. Technol., 25 (2002) 223.

    Article  Google Scholar 

  61. Tennakone K., Tilakaratne C. T. K. and Kottegoda I. R. M., J. Photochem. Photobiol. A, 87 (1995) 177.

    Article  Google Scholar 

  62. Kasanen J., Suvanto M. and Pakkanen T. T., J. Appl. Polym. Sci., 111 (2009) 2597.

    Article  Google Scholar 

  63. Fostier A. H., Pereira M. D. S. S., Rath S. and Guimaraes J. R., Chemosphere, 72 (2008) 319.

    Article  ADS  Google Scholar 

  64. Meichtry J. M., Lin H. J., de la Fuente L., Levy I. K., Gautier E. A., Blesa M. A. and Litter M. I., J. Sol. Energy Eng., 129 (2007) 119.

    Article  Google Scholar 

  65. Sriwong C., Wongnawa S. and Patarapaiboolchai O., Catal. Commun., 9 (2008) 213.

    Article  Google Scholar 

  66. Demir M. M., Memesa M., Castignolles P. and Wegner G., Macromol. Rapid Commun., 10 (2006) 763.

    Article  Google Scholar 

  67. Demir M. M., Castignolles P., Akbey U. and Wegner G., Macromolecules, 40 (2007) 4190.

    Article  ADS  Google Scholar 

  68. Cantarella M., Sanz R., Buccheri M. A., Ruffino F., Rappazzo G., Scalese S., Impellizzeri G., Romano L. and Privitera V., J. Photochem. Photobiol. A, 321 (2016) 1.

    Article  Google Scholar 

  69. Cantarella M., Sanz R., Buccheri M. A., Romano L. and Privitera V., Mater. Sci. Semicond. Process., 42 (2016) 58.

    Article  Google Scholar 

  70. Hafizah N. N., Mamat M. H., Said C. M. S., Abidin M. H. and Rusop M., IOP Conf. Ser. Mater. Sci. Eng., 46 (2013) 012045.

    Article  Google Scholar 

  71. Mills A., Hill C. and Robertson P. K. J., J. Photochem. Photobiol. A, 237 (2012) 7.

    Article  Google Scholar 

  72. Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of photocatalytic activity of surfaces in an aqueous medium by degradation of methylene blue. ISO 10678:2010(E). International Organization for Standardization, Switzerland (2010).

  73. Rochking M., Pasternak S. and Paz Y., Molecules, 20 (2015) 88.

    Article  Google Scholar 

  74. Hoffmann M. R., Martin S. T., Choi W. and Bahnemann D. W., Chem. Rev., 95 (1995) 69.

    Article  Google Scholar 

  75. Guldi D. M., Rahman G. M. A., Zerbetto F. and Prato M., Acc. Chem. Res., 38 (2005) 871.

    Article  Google Scholar 

  76. Woan K., Pyrgiotakis G. and Sigmund W., Adv. Mater., 21 (2009) 2233.

    Article  Google Scholar 

  77. Chen J., Qiu F., Xu W., Cao S. and Zhu H., Appl. Catal. A, 495 (2015) 131.

    Article  Google Scholar 

  78. Wang C., Li J., Mele G., Yang G. M., Zhang F. X., Palmisano L. and Vasapollo G., Appl. Catal. B, 76 (2007) 218.

    Article  Google Scholar 

  79. Youngblood W. J., Anna Lee S. H., Maeda K. and Mallouk T. E., Acc. Chem. Res., 42 (2009) 1966.

    Article  Google Scholar 

  80. Pellegrino G., Condorelli G. G., Privitera V., Cafra B., Di Marco S. and Alberti A., J. Phys. Chem. C, 115 (2011) 7760.

    Article  Google Scholar 

  81. Zhou X. T., Ji H. B. and Huang X. J., Molecules, 17 (2012) 1149.

    Article  Google Scholar 

  82. Cherian S. and Wamser C. C., J. Phys. Chem. B, 104 (2000) 3624.

    Article  Google Scholar 

  83. Boxall A. B. A., New and Emerging Water Pollutants arising from Agriculture (OECD Publishing) 2012.

  84. Oaks J. L., Gilbert M., Virani M. Z., Watson R. T., Meteyer C. U., Rideout B. A., Shivaprasad H. L., Ahmed S., Chaudhry M. J. I., Arshad M., Mahmood S., Ali A. and Khan A. A., Nature, 427 (2004) 630.

    Article  ADS  Google Scholar 

  85. Garric J., Vollat, B., Duis K., Péry A., Junker T., Ramil M., Fink G. and Ternes T. A., Chemosphere, 69 (2007) 903.

    Article  ADS  Google Scholar 

  86. Lange R., Hutchinson T. H., Croudace C. P., Siegmund F., Schweinfurth H., Hampe P., Panter G. H. and Sumpter J. P., Environ. Toxicol. Chem., 20 (2001) 1216.

    Article  Google Scholar 

  87. Boxall A. B. A., Kolpin D. W., Halling-Sorensen B. and Tolls J., Environ. Sci. Technol., 37 (2003) 286A.

    Article  ADS  Google Scholar 

  88. Alder A. C., Consumption and occurrence, in Human Pharmaceuticals, Hormones and Fragrances. The challenge of Micropollutants in Urban Water Management, edited by Ternes T. A. and Joss A. (IWA Publishing) 2006.

  89. Lonappan L., Brar S. K, Das R. K., Verma M. and Surampalli R. Y., Environ. Int., 96 (2016) 127.

    Article  Google Scholar 

  90. Hughes S. R., Kay P. and Brown L. E., Environ. Sci. Technol., 47 (2013) 661.

    Article  ADS  Google Scholar 

  91. Loos R., Carvalho R., Antonio D. C., Comero S., Locoro G., Tavazzi S., Paracchini B., Ghiani M., Lettieri T., Blaha L., Jarosova B., Voorspoels S., Servaes K., Haglund P., Fick J., Lindberg R. H., Schwesig D. and Gawlik B. M., Water Res., 47 (2013) 6475.

    Article  Google Scholar 

  92. Petrie B., Barden R. and Kasprzyk-Horden B., Water Res., 72 (2015) 3.

    Article  Google Scholar 

  93. Haupt K. and Mosbach K., Chem. Rev., 100 (2000) 2495.

    Article  Google Scholar 

  94. Martín-Esteban A., Trac-Trends Anal. Chem., 45 (2013) 169.

    Article  Google Scholar 

  95. Malitesta C., Mazzotta E., Picca R. A., Poma A., Chianella I. and Piletsky S. A., Anal. Bioanal. Chem., 402 (2012) 1827.

    Article  Google Scholar 

  96. Huang D. L., Wang R. Z., Liu Y. G., Zeng G. M., Lai P., Lu B. A., Xu J. J., Wang C. and Huang C., Environ. Sci. Pollut. Res., 22 (2015) 963.

    Article  Google Scholar 

  97. He C. Y., Long Y. Y. and Pan J. L., J. Biochem. Bioph. Meth., 70 (2007) 133.

    Article  Google Scholar 

  98. Zheng C., Huang Y. P. and Liu Z. S., Anal. Bioanal. Chem., 405 (2013) 2147.

    Article  Google Scholar 

  99. Mayes A. G. and Mosbach K., Anal. Chem., 68 (1996) 3769.

    Article  Google Scholar 

  100. Yan S. L., Gao Z. X., Fang Y. J., Cheng Y. Y., Zhou H. Y. and Wang H. Y., Dyes Pigm., 74 (2007) 572.

    Article  Google Scholar 

  101. Hu X., Hu Y. and Li G., J. Chromatogr. A, 1147 (2007) 1.

    Article  Google Scholar 

  102. Gao B., Wang J., An F. and Liu Q., Polymer, 49 (2008) 1230.

    Article  Google Scholar 

  103. Puoci F., Iemma F., Cirillo G., Picci N., Matricardi P. and Alhaique F., Molecules, 12 (2007) 805.

    Article  Google Scholar 

  104. Bhaskarapillai A., Sevilimedu N. V. and Sellergren B., Ind. Eng. Chem. Res., 48 (2009) 3730.

    Article  Google Scholar 

  105. Gholivand M. B., Torkashvand M. and Malekzadeh G., Anal. Cim. Acta, 713 (2012) 36.

    Article  Google Scholar 

  106. Ivanova-Mitsev P. K., Guerreiro A., Piletska E. V., Whitcombe M. J., Zhou Z., Mitsev P. A., Davis F. and Piletsky S. A., Angew. Chem., Int. Ed., 51 (2012) 5196.

    Article  Google Scholar 

  107. Spivak D. A. and Shea K. J., Macromolecules, 31 (1998) 2160.

    Article  ADS  Google Scholar 

  108. Byun H. S., Youn Y. N., Yun Y. H. and Yoon S. D., Sep. Purif. Technolog., 74 (2010) 144.

    Article  Google Scholar 

  109. Apodaca D. C., Pernites R. B., Ponnapati R., Del Mundo F. R. and Advincula R. C., Macromolecules, 44 (2011) 6669.

    Article  ADS  Google Scholar 

  110. Abbate V., Bassindale A. R., Brandstadt K. F. and Taylor P. G., J. Catal., 284 (2011) 68.

    Article  Google Scholar 

  111. da Silva M. S., Viveiros R., Morgada P. I., Aguiar-Ricardo A., Correia I. J. and Casimiro T., Int. J. Pharm., 416 (2011) 61.

    Article  Google Scholar 

  112. Hoshino Y., Koide H., Urakami T., Kanazawa H., Kodama T., Oku N. and Shea K. J., J. Am. Chem. Soc., 19 (2010) 644.

    Google Scholar 

  113. Shen X., Xu C. and Ye L., Ind. Eng. Chem. Res., 52 (2013) 13890.

    Article  Google Scholar 

  114. Dai C. M., Geissen S. U., Zhang Y. L., Zhang Y. J. and Zhou X. F., Environ. Pollut., 159 (2011) 1660.

    Article  Google Scholar 

  115. Jing T., Wang J., Liu M., Zhou Y., Zhou Y. and Mei S., Environ. Sci. Pollut. R., 21 (2014) 1153.

    Article  Google Scholar 

  116. Meng Z., Zhang Q., Xue M., Wang D. and Wang A., Propellants Explos. Pyrotech., 37 (2012) 100.

    Article  Google Scholar 

  117. Liu J. and Wulff G., J. Am. Chem. Soc., 130 (2008) 8044.

    Article  Google Scholar 

  118. Shen X., Zhu L., Liu G., Yu H. and Tang H., Environ. Sci. Technol., 42 (2008) 1687.

    Article  ADS  Google Scholar 

  119. Pan G. Q., Zhang Y., Ma Y., Li C. X. and Zhang H. Q., Angew. Chem., Int. Ed., 50 (2011) 11731.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cantarella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantarella, M., Impellizzeri, G. & Privitera, V. Functional nanomaterials for water purification. Riv. Nuovo Cim. 40, 595–632 (2017). https://doi.org/10.1393/ncr/i2017-10142-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2017-10142-8

Navigation