Skip to main content
Log in

Biomaterials for molecular electronics development of optical biosensor for retinol

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Molecular electronics involves expertise from several branches of science. Various biomaterials and electronics are involved in the fabrication of such devices. While passive biomaterials are involved in anchoring the active biomolecules, the latter are involved in switching and/or signal transduction. In the present investigation we have used a glass-capillary-based approach to design a biosensor for retinol. The sensing element is retinol-binding protein (RBP). The affinity of retinoic-acid-horseradish peroxidase (conjugate) to RBP is tested using a surface plasmon resonance technique. A simple photomultiplier-tube-based system is exploited to monitor the chemiluminescent signal generated upon reaction of hydrogen peroxide and luminol with the conjugate bound to RBP. The photomultiplier tube is directly coupled to a computer for data logging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong, F. T., ed. (1989), Molecular Electronics: Biosensors and Biocomputers, Plenum, NY.

    Google Scholar 

  2. Aviram, A. (1992), Adv. Mater. 4, 441,442.

    Article  Google Scholar 

  3. Mirkin, C. A. and Ratner, M. A. (1992), Annu. Rev. Phys. Chem. 43, 719–754.

    Article  CAS  Google Scholar 

  4. Friend, R. (1991), Nature 352, 377–378.

    Article  ADS  Google Scholar 

  5. Bryce, M. (1991), Chem. Br. 27, 707–710.

    Google Scholar 

  6. Göpel, W. (1991), Sens. Act. B 4, 7–21.

    Article  Google Scholar 

  7. Bloor, D. (1991), Physica Scripta T39, 380–385.

    Article  CAS  ADS  Google Scholar 

  8. Thomas, J. M. (1988), Angew Chem. Int. Ed. Engl. 27, 1751–1754.

    Article  Google Scholar 

  9. Strong, A. E. and Moore, B. D. (1999), J. Mater. Chem. 9, 1097–1105.

    Article  CAS  Google Scholar 

  10. Birge, R. (1995), Sci. Am. 3, 90–95.

    Article  Google Scholar 

  11. Ashkenazi, G., Ripoll, D. R., Lotan, N., and Scheraga, N. A. (1997), Biosens. Bioelectron. 12, 85–95.

    Article  PubMed  CAS  Google Scholar 

  12. Lindsey, J. S. (1991), N. J. Chem. 15, 153–180.

    CAS  Google Scholar 

  13. Kiselev, V. F. (1990), Kinetika I Kataliz 31, 273–283.

    CAS  Google Scholar 

  14. Swalen, J. D. (1991), Annu. Rev. Mater. Sci. 21, 373–408.

    Article  CAS  Google Scholar 

  15. Kelley, T. W., Granstrom, E. L., and Frisbie, C. D. (1999), Adv. Mater. 11, 261–264.

    Article  CAS  Google Scholar 

  16. McCarty, G. S. and Weiss, P. S. (1999), Chem Rev. 99, 1983–1990.

    Article  PubMed  CAS  Google Scholar 

  17. Englebienne, P. (1999), J. Mater. Chem. 9, 1043–1054.

    Article  CAS  Google Scholar 

  18. Martin, C. R. and Mitchell, D. T. (1998), Anal. Chem. 70(9), 322A-327A.

    CAS  Google Scholar 

  19. Dagani, R. (1999), C EN 77, 6.

    Google Scholar 

  20. Weetall, H. H. (1996), Biosens. Bioelectron. 11, 327–333.

    Article  PubMed  CAS  Google Scholar 

  21. Barr, J. (2000), Paper presented at: The Fourteenth Annual Morton D. Sarver Lecture Series on Contact Lenses and the Cornea, Morton D. Sarver Laboratory, Berkeley, CA.

    Google Scholar 

  22. Weetall, H. H., Robertson, B., Cullin, D., Brown, J., and Walch, M. (1993), Biochim. Biophys. Acta 1142, 211–213.

    Article  CAS  Google Scholar 

  23. Stupp, S. I. and Braun, P. V. (1997), Science 277, 1242–1248.

    Article  PubMed  CAS  Google Scholar 

  24. Momeni, N., Ramanathan, K., Larsson, P. O., Danielsson, B., Bengmark, S., and Khayyami, M. (1999), Anal. Chim. Acta 387, 21–27.

    Article  CAS  Google Scholar 

  25. Hradsky, A., Bildstein, B., Schuler, N., Schottenberger, H., Jaitner, P., Ongania, K. H., Wurst, K., and Launay, J. P. (1997), Organometallics 16, 392–402.

    Article  CAS  Google Scholar 

  26. Weetall, H. H., Druzhko, A. B., Samuelson, L. A., deLera, A. R., and Alvarez, R. (1997), Bioelectrochem. Bioenerg. 44, 37–43.

    Article  CAS  Google Scholar 

  27. Sampath, S. and Lev, O. (1997), Adv. Mater. 9, 410–413.

    Article  CAS  Google Scholar 

  28. Wittstock, G., Hesse, R., and Schumann, W. (1997), Electroanalysis 9, 746–750.

    Article  CAS  Google Scholar 

  29. Silin, V., Weetall, H., and Vanderah, D. J. (1997), J. Coll. Interf. Sci. 185, 94–103.

    Article  CAS  Google Scholar 

  30. Doron, A., Portnoy, M., Dagan, M. L., Katz, E., and Willner, I. (1996), J. Am. Chem. Soc. 118, 8937–8944.

    Article  CAS  Google Scholar 

  31. Finklea, H. O. and Hanshew, D. D. (1992), J. Am. Chem. Soc. 114, 3173–3181.

    Article  CAS  Google Scholar 

  32. Ostrovsky, M. A. and Weetall, H. H. (1998), Biosens. Bioelectron. 13, 61–65.

    Article  CAS  Google Scholar 

  33. Stoeckenius, W. (1976), Sci. Am. 234, 38–46.

    Article  PubMed  CAS  Google Scholar 

  34. Vo-Dinh, T. (1998), Sens. Act. B 51, 52–59.

    Article  Google Scholar 

  35. Yershov, G., Barsky, V., Belgovskiy, A., Kirillov, E., Kreindlin, E., Ivanov, I., Parinov, S., Guschin, D., Drobishev, A., Dubiley, S., and Mirzabekov, A. (1996), Proc. Natl. Acad. Sci. USA 93, 4913–4918.

    Article  PubMed  CAS  ADS  Google Scholar 

  36. Rogers, K. R., Apostol, A., Madsen, S. J., and Spencer, C. W. (1999), Anal. Chem. 71, 4423–4426.

    Article  PubMed  CAS  Google Scholar 

  37. Service, R. F. (1997), Science 277, 1036,1037.

    Google Scholar 

  38. Hoheisel, J. D. (1997), Tibtech 15, 465–469.

    CAS  Google Scholar 

  39. Storhoff, J. J. and Mirkin, C. A. (1999), Chem. Rev. 99, 1849–1862.

    Article  PubMed  CAS  Google Scholar 

  40. Lee, I., Lee, J. W., and Greenbaum, E. (1997), Phy. Rev. Lett. 79, 3294–3297.

    Article  CAS  ADS  Google Scholar 

  41. Sigmund, E., Gribi, P., and Isenmann, G. (1993), Appl. Surf. Sci. 65/66, 342–348.

    Article  Google Scholar 

  42. Tsionsky, M. and Lev, O. (1995), J. Electrochem. Soc. 142, 2132–2138.

    Article  CAS  Google Scholar 

  43. Porteu, F., Palacin, S., Teixier, A. R., and Barraud, A. (1991), Makromol. Chem. Macromol. Symp. 46, 37–45.

    CAS  Google Scholar 

  44. Alva, S., Phadke, R. S., and Govil, G. (1883), Mol. Cryst. Liq. Cryst. Sci. Tech. Sect. A 234, 377–383.

    Google Scholar 

  45. He, G. S., Signorini, R., and Prasad, P. N. (1998), Appl. Optics 37, 5720–5726.

    CAS  ADS  Google Scholar 

  46. Wang, X., Chen, J. I., Marturunkakul, S., Li, L., Kumar, J., and Tripathy, S. K. (1997), Chem. Mater. 9, 45–50.

    Article  Google Scholar 

  47. Chen, Z., Kaplan, D. L., Yang, K., Kumar, J., Marx, K. A., and Tripathy, S. K. (1997), Appl. Optics 36, 1655–1659.

    Article  CAS  ADS  Google Scholar 

  48. Daub, J., Beck, M., Knorr, A., and Spreitzer, H. (1996), Pure Appl. Chem. 68, 1399–1404.

    CAS  Google Scholar 

  49. Samuelson, L. A., Miller, M., Galotti, D. M., Marx, K. A., Kumar, J., Tripathy, S. K., and Kaplan, D. L. (1992), Langmuir 8, 604–608.

    Article  CAS  Google Scholar 

  50. Casstevens, M. K., Samoc, M., Pfleger, J., and Prasad, P. N. (1990), J. Chem. Phys. 92, 2019–2024.

    Article  CAS  ADS  Google Scholar 

  51. Wilson, E. G. (1995), Jpn. J. Appl. Phys. 34, 3775–3781.

    Article  CAS  Google Scholar 

  52. Orczyk, M. E., Samoc, M., Swiatkiewicz, J., and Prasad, P. N. (1993), J. Chem. Phys. 98, 2524–2533.

    Article  CAS  ADS  Google Scholar 

  53. He, J. A., Samuelson, L., Li, L., Kumar, J., and Tripathy, S. K. (1998), Langmuir 14, 1674–1679.

    Article  CAS  Google Scholar 

  54. Bradley, D. C. (1991), Chem. Br. 27(8), 719–723.

    MathSciNet  Google Scholar 

  55. Pal, A. J., Östergård, T. P., Österbacka, R. M., Paloheimo, J., and Stubb, H. (1998), IEEE J. Select Top. Quant. Electron. 4, 137–143.

    Article  CAS  Google Scholar 

  56. Pandey, P. C., Upadhyay, B. C., Pandey, C. M. D., and Pathak, H. C. (1999), Sens. Act. B 56, 112–120.

    Article  Google Scholar 

  57. Xu, D., Martin, C., and Schulten, K. (1996), Biophys. J. 70, 453–460.

    Article  PubMed  CAS  Google Scholar 

  58. Petrak, M. R. and Hong, F. T. (1998), Bioelectron. Bioenerg. 45, 193–201.

    Article  CAS  Google Scholar 

  59. Fuller, B. E., Okajima, T. L., and Hong, F. T. (1995), Bioelectrochem. Bioenerg. 37, 109–124.

    Article  CAS  Google Scholar 

  60. Lewis, A. and Del Priore, L. V. (1988), Phys. Today 41, 38–46.

    ADS  Google Scholar 

  61. Drachev, et al. (1974), Nature 249, 321.

    Article  PubMed  CAS  ADS  Google Scholar 

  62. Welsch, W., Klein, C., von Schickfus, M., and Hunklinger, S. (1996), Anal. Chem. 68, 2000–2004.

    Article  CAS  Google Scholar 

  63. Wolfbeis, O. S. (1991), in Fiber Optic Chemical Sensors and Biosensors, vol. 1, Wolfbeis, O. S., ed., CRC, Boca Raton, FL, pp. 1–23.

    Google Scholar 

  64. Walt, D. R. (1998), Acc. Chem. Res. 31, 267–278.

    Article  CAS  Google Scholar 

  65. Wolfbeis, O. S. (1996), Tr. Anal. Chem. 15, 225–232.

    CAS  Google Scholar 

  66. Svitel, J., Dzgoev, A., Ramanathan, K., and Danielsson, B. (2000), Biosens. Bioelectron., 15, 411–415.

    Article  PubMed  CAS  Google Scholar 

  67. Guilbault, G. G. and Schmid, R. D. (1991), in Electrochemical, Piezoelectric and Fiber-Optic Biosensors, vol. 1, JAI, Greenwich, CT, pp. 257–289.

    Google Scholar 

  68. Narang, U., Gauger, P. R., and Ligler, F. S. (1997), Anal. Chem. 69, 1961–1964.

    Article  CAS  Google Scholar 

  69. Vo-Dinh, T. (1988), Sens. Act. B 51, 52–59.

    Article  Google Scholar 

  70. Lehn, J.-M. (1988), Angew. Chem. Int. Ed. Engl. 27, 89.

    Article  Google Scholar 

  71. Chen, J. C. and Conrad, M. (1997), Neural Networks 10, 111–123.

    Article  PubMed  CAS  Google Scholar 

  72. Ayyagari, M. S., Pande, R., Kamtekar, S., Gao, H., Marx, K. A., Kumar, J., Tripathy, S. K., Akkara, J. A., and Kaplan, D. L. (1995), Biotech. Bioeng. 45, 116–121.

    Article  CAS  Google Scholar 

  73. Ben-David, O., Shafir, E., Gilath, I., Prior, Y., and Avnir, D. (1997), Chem. Mater. 9, 2255–2257.

    Article  CAS  Google Scholar 

  74. Dzgoev, A., Mecklenburg, M., Xie, B., Miyabayashi, A., Larsson, P.-O., and Danielsson, B. (1997), Anal. Chim. Acta 347, 87–93.

    Article  CAS  Google Scholar 

  75. Dzgoev, A., Gazaryan, I., Ramanathan, K., and Danielsson, B. (1999), Anal. Chem. 71, 5258–5261.

    Article  PubMed  CAS  Google Scholar 

  76. Ramanathan, K., Jönsson, B. R., and Danielsson, B. (2000), Anal. Chem. 72, 3443–3448.

    Article  PubMed  CAS  Google Scholar 

  77. Bovaird, J. H., Ngo, T. T., and Lenoff, H. M. (1982), Clin. Chem. 28, 2423–2426.

    PubMed  CAS  Google Scholar 

  78. Newcomer, M. E., Jones, T. A., Åqvist, J., Sundelin, J., Eriksson, U., Rask, L., and Peterson, P. A. (1984), EMBO J. 3, 1451–1454.

    PubMed  CAS  Google Scholar 

  79. Cogan, U., Kopelman, M., Mokady, S., and Shinitzky, M. (1976), Eur. J. Biochem. 65, 71–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumaran Ramanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanathan, K., Svitel, J., Dzgoev, A. et al. Biomaterials for molecular electronics development of optical biosensor for retinol. Appl Biochem Biotechnol 96, 287–301 (2001). https://doi.org/10.1385/ABAB:96:1-3:287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:96:1-3:287

Index Entries

Navigation