Skip to main content

The Study of Gene Polymorphisms

How Complex Is Complex Genetic Disease?

  • Protocol
Renal Disease

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 86))

  • 674 Accesses

Abstract

What is a polymorphism? Strictly speaking, a polymorphism is the occurrence in a population of two or more genetically determined forms in such frequencies that the rarest of them could not be maintained by mutation alone. For our purposes, we are examining polymorphic DNA, so that the polymorphic information content is the amount of variation at a particular site in the DNA. When dealing with complex genetic diseases, particularly for mapping, we often rely on satellite DNA. Satellite DNA is a class of DNA sequences, that separates out on density-gradient centrifugation as a shoulder or “satellite” to the main peak of DNA. Satellite DNA corresponds to 10–15% of the DNA in the human genome consisting of tandemly repeated DNA sequences. Minisatellites (also termed variable numbers of tandem repeats, or VNTR) have repeat units 6–24 basepairs in length, and microsatellites have repeat units of only 1–4 basepairs in length. We rely on microsatellites. Microsatellite DNA consists of polymorphic variation in DNA sequences caused by VNTR of the dinucleotide CA, tri- or tetranucleotides. Microsatellites are generally less than 300 basepairs long. Fortunately for us, there are thousands of microsatellites scattered all along the genome. Every person on earth has microsatellites at precisely the same location as all other persons. However, the microsatellites vary (are polymorph) in terms of their length. A hypothetical example is shown in Fig. 1.

A hypothetical example of a microsatellite marker is shown. D12S310 actually exists. Let us assume this microsatellite consists of six variants. They differ in terms of their length. CA tandem repeats are a common marker pattern. Each person on earth carries two of these markers on one or the other of their chromosomes 12. The variants can be amplified by the polymerase chain reaction and separated by means of electrophoresis. The longer variants travel more slowly in the gel than the shorter variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Busjahn, A., Knoblauch, H., Faulhaber, H. D., Aydin, A., Uhlmann, R., Tuomilehto, J., et al. (2000) A region on chromosome 3 is linked to dizygotic twinning. Nat. Genet. 26, 398–399.

    Article  PubMed  CAS  Google Scholar 

  2. [Anonymous] (1999) Freely associating. Nat. Genet. 22, 1–2.

    Article  Google Scholar 

  3. Spielman, R. S., McGinnis, R. E., and Ewens, W. J. (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516.

    PubMed  CAS  Google Scholar 

  4. Spielman, R. S. and Ewens, W. J. (1998) A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am. J. Hum. Genet. 62, 450–458.

    Article  PubMed  CAS  Google Scholar 

  5. Horikawa, Y., Oda, N., Cox, N. J., Li, X., Orho-Melander, M., Hara, M., et al. (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet. 26, 163–175.

    Article  PubMed  CAS  Google Scholar 

  6. Hanis, C. L., Boerwinkle, E., Chakraborty, R., Ellsworth, D. L., Concannon, P., Stirling, B., et al. (1996) A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat. Genet. 13, 161–166.

    Article  PubMed  CAS  Google Scholar 

  7. Altshuler, D., Daly, M., and Kruglyak, L. (2000) Guilt by association. Nat. Genet. 26, 135–137.

    Article  PubMed  CAS  Google Scholar 

  8. Knoblauch, H., Bauerfeind, A., Krahenbuhl, C., Daury, A., Rohde, K., Bejanin, S., et al. (2002) Common haplotypes in five genes influence genetic variance of LDL and HDL cholesterol in the general population. Hum. Mol. Genet. 11, 1477–1485.

    Article  PubMed  CAS  Google Scholar 

  9. Roses, A. D. (2000) Pharmacogenetics and future drug development and delivery. Lancet 355, 1358–1361.

    Article  PubMed  CAS  Google Scholar 

  10. Martin, E. R., Gilbert, J. R., Lai, E. H., Riley, J., Rogala, A. R., Slotterbeck, B. D., et al. (2000) Analysis of association at single nucleotide polymorphisms in the APOE region. Genomics 63, 7–12.

    Article  PubMed  CAS  Google Scholar 

  11. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24.

    Article  PubMed  CAS  Google Scholar 

  12. Ross, P., Hall, L., Smirnov, I., and Haff, L. (1998) High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat. Biotechnol. 16, 1347–1351.

    Article  PubMed  CAS  Google Scholar 

  13. Aydin, A., Baron, H., Bahring, S., Schuster, H., and Luft, F. C. (2001) Efficient and cost-effective single nucleotide polymorphism detection with different fluorescent applications. Biotechniques 4, 920–928.

    Google Scholar 

  14. Syvanen, A. C. (1999) From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum. Mutat. 13, 1–10.

    Article  PubMed  CAS  Google Scholar 

  15. Barany, F. (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88, 189–193.

    Article  PubMed  CAS  Google Scholar 

  16. Baron, H., Fung, S., Aydin, A., Bahring, S., Luft, F. C., and Schuster, H. (1996) Oligonucleotide ligation assay (OLA) for the diagnosis of familial hypercholes-terolemia. Nat. Biotechnol. 14, 1279–1282.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bähring, S., Aydin, A., Luft, F.C. (2003). The Study of Gene Polymorphisms. In: Goligorsky, M.S. (eds) Renal Disease. Methods in Molecular Medicine™, vol 86. Humana Press. https://doi.org/10.1385/1-59259-392-5:221

Download citation

  • DOI: https://doi.org/10.1385/1-59259-392-5:221

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-134-9

  • Online ISBN: 978-1-59259-392-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics