Skip to main content

Fractionation Analysis of the Subcellular Distribution of GLUT-4 in 3T3-L1 Adipocytes

  • Protocol
Book cover Diabetes Mellitus

Part of the book series: Methods in Molecular Biology™ ((MIMM,volume 83))

Abstract

In 1980, two groups simultaneously provided evidence of the existence of an intracellular pool of glucose transporters in rat adipocytes (1,2). We now know that facilitative glucose uptake occurs through a family of highly related integral membrane proteins that share significant sequence similarity. Of the established glucose transporter isoforms, GLUT-4 is highly expressed in adipose tissue and striated muscle (3). In the basal state, GLUT-4 cycles slowly between the plasma membrane and one or more intracellular compartments, with the vast majority of the transporter residing in vesicular compartments within the cell interior (46). Activation of the insulin receptor triggers a large increase in the rate of GLUT-4 vesicle exocytosis and a smaller decrease in the rate of internalization by endocytosis (710). The stimulation of exocytosis by insulin is probably the major step for GLUT-4 translocation because complete inhibition of GLUT-4 endocytosis only modestly increases plasma membrane-associated GLUT-4 protein without affecting the extent of insulin-stimulated GLUT-4 translocation (1113). In contrast to GLUT-4, GLUT-1 is an intracellular and plasma membrane localized in the basal state and displays a modest insulin-stimulated redistribution to the plasma membrane. Thus, the overall insulin-dependent shift in the cellular dynamics of GLUT-4 vesicle trafficking results in a net increase of GLUT-4 on the cell surface, thereby increasing the rate of glucose uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cushman, S. W. and Wardzala, L. J. (1980) Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255, 4758–4762.

    PubMed  CAS  Google Scholar 

  2. Suzuki, K. and Kono, T. (1980) Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl. Acad. Sci. USA 77, 2542–2545.

    Article  PubMed  CAS  Google Scholar 

  3. Charron, M. J., Katz, E. B. and Olson, A. L. (1999) GLUT-4 gene regulation and manipulation. J. Biol. Chem. 274, 3253–3256.

    Article  PubMed  CAS  Google Scholar 

  4. Kandror, K. V and Pilch, P. F. (1996) The insulin-like growth factor II/mannose 6-phosphate receptor utilizes the same membrane compartments as GLUT-4 for insulin-dependent trafficking to and from the rat adipocyte cell surface. J. Biol. Chem. 271, 21,703–21,708.

    Article  PubMed  CAS  Google Scholar 

  5. Rea, S. and James, D. E. (1997) Moving GLUT-4: the biogenesis and trafficking of GLUT-4 storage vesicles. Diabetes 46, 1667–1677.

    Article  PubMed  CAS  Google Scholar 

  6. Pessin, J. E., Thurmond, D. C, Elmendorf, J. S., Coker, K. J., and Okada, S. (1999) Molecular basis of insulin-stimulated GLUT-4 vesicle trafficking. Location! Location! Location! J. Biol. Chem. 274, 2593–2596.

    Article  PubMed  CAS  Google Scholar 

  7. Satoh, S., Nishimura, H., Clark, A. E., Kozka, I. J., Vannucci, S. J., Simpson, I. A., et al. (1993) Use of bismannose photolabel to elucidate insulin-regulated GLUT-4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J. Biol. Chem. 268, 17820–17829.

    PubMed  CAS  Google Scholar 

  8. Jhun, B. H., Rampal, A. L., Liu, H., Lachaal, M., and Jung, C. Y. (1992) Effects of insulin on steady state kinetics of GLUT-4 subcellular distribution in rat adipocytes. Evidence of constitutive GLUT-4 recycling. J. Biol. Chem. 267, 17,710–17,715.

    PubMed  CAS  Google Scholar 

  9. Yang, J. and Holman, G. D. (1993) Comparison of GLUT-4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. J. Biol. Chem. 268, 4600–4603.

    PubMed  CAS  Google Scholar 

  10. Czech, M. P. and Buxton, J. M. (1993) Insulin action on the internalization of the GLUT-4 glucose transporter in isolated rat adipocytes. J. Biol. Chem. 268, 9187–9190.

    PubMed  CAS  Google Scholar 

  11. Shibata, H., Suzuki, Y, Omata, W., Tanaka, S., and Kojima, I. (1995) Dissection of GLUT-4 recycling pathway into exocytosis and endocytosis in rat adipocytes. Evidence that GTP-binding proteins are involved in both processes. J. Biol. Chem. 270, 11,489–11,495.

    Article  PubMed  CAS  Google Scholar 

  12. Kao, A. W., Ceresa, B. P., Santeler, S. R., and Pessin, J. E. (1998) Expression of a dominant interfering dynamin mutant in 3T3L1 adipocytes inhibits GLUT-4 endocytosis without affecting insulin signaling. J. Biol. Chem. 273, 25450–25457.

    Article  PubMed  CAS  Google Scholar 

  13. Ceresa, B. P., Kao, A. W., Santeler, S. R., and Pessin, J. E. (1998) Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Mol. Cell. Biol. 18, 3862–3870.

    PubMed  CAS  Google Scholar 

  14. Tordjman, K. M., Leingang, K. A., James, D. E., and Mueckler, M. M. (1989) Differential regulation of two distinct glucose transporter species expressed in 3T3-L1 adipocytes: effect of chronic insulin and tolbutamide treatment. Proc. Natl. Acad. Sci. USA 86, 7761–7765.

    Article  PubMed  CAS  Google Scholar 

  15. Resh, M. D. (1982) Development of insulin responsiveness of the glucose transporter and the (Na+,K+)-adenosine triphosphatase during in vitro adipocyte differentiation. J. Biol. Chem. 257, 6978–6986.

    PubMed  CAS  Google Scholar 

  16. Simpson, I. A., Yver, D. R., Hissin, P. J., Wardzala, L. J., Karnieli, E., Salans, L. B., et al. (1983) Insulin-stimulated translocation of glucose transporters in the isolated rat adipose cells: characterization of subcellular fractions. Biochim. Biophys. Acta 763, 393–407.

    Article  PubMed  CAS  Google Scholar 

  17. Joost, H. G. and Schurmann, A. (2001) Subcellular fractionation of adipocytes and 3T3-L1 cells. Methods Mol. Biol. 155, 77–82.

    PubMed  CAS  Google Scholar 

  18. Chen, D., Elmendorf, J. S., Olson, A. L., Li, X., Earp, H. S., and Pessin, J. E. (1997) Osmotic shock stimulates GLUT-4 translocation in 3T3L1 adipocytes by a novel tyrosine kinase pathway. J. Biol. Chem. 272, 27,401–27,410.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Elmendorf, J.S. (2003). Fractionation Analysis of the Subcellular Distribution of GLUT-4 in 3T3-L1 Adipocytes. In: Özcan, S. (eds) Diabetes Mellitus. Methods in Molecular Biology™, vol 83. Humana Press. https://doi.org/10.1385/1-59259-377-1:105

Download citation

  • DOI: https://doi.org/10.1385/1-59259-377-1:105

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-148-6

  • Online ISBN: 978-1-59259-377-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics