Skip to main content

Pre-PCR Processing of Samples

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 216))

Abstract

Diagnostic polymerase chain reaction (PCR) is an extremely powerful rapid method for diagnosis of microbial infections and genetic diseases, as well as for detecting microorganisms in environmental and food samples. However, the usefulness of diagnostic PCR is limited, in part, by the presence of inhibitory substances in complex biological samples, which reduce or even block the amplification capacity of PCR in comparison with pure solutions of nucleic acids (1). Thus, the presence of substances interfering with amplification will directly influence the performance of diagnostic PCR and, in particular, the assay’s sensitivity of detection. Some inhibitors may dramatically interfere with amplification, even at very small amounts. For example, PCR mixtures containing the widely used Taq DNA polymerase are totally inhibited in the presence of 0.004% (v/v) human blood (2). Consequently, sample processing prior to PCR is required to enable DNA amplification of the target nucleic acids in the presence of even traces of PCR-inhibitory substances. To improve diagnostic PCR for routine analysis purposes, the processing of the sample is crucial for the robustness and the overall performance of the method. In general, diagnostic PCR may be divided into four steps: (i) sampling; (ii) sample preparation; (iii) nucleic acid amplification; and (iv) detection of PCR products Fig. 1). Pre-PCR processing comprises all steps prior to the detection of PCR products.

Illustration of pre-PCR processing. The figure shows the different steps in diagnostic PCR. Pre-PCR processing refers to sampling, sample preparation, and DNA amplification with the addition of PCR facilitators and the use of an appropriate DNA polymerase.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lantz, P. G., Abu Al-Soud, W., Knutsson, R., Hahn-Hägerdal, B., and Rådström, P. (2000) Biotechnical use of the polymerase chain reaction for microbiological analysis of biological samples. Biotechnol. Annu. Rev. 5, 87–130.

    Article  PubMed  CAS  Google Scholar 

  2. Abu Al-Soud, W., and Rådström, P. (1998) Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Appl. Environ. Microbiol. 64, 3748–3753.

    PubMed  CAS  Google Scholar 

  3. Rossen, L., Nørskov, P., Holmstrøm, K., and Rasmussen, O. F. (1992) Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int. J. Food Microbiol. 17, 37–45.

    Article  PubMed  CAS  Google Scholar 

  4. Wilson, I. G. (1997) Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63, 3741–3751.

    PubMed  CAS  Google Scholar 

  5. Abu Al-Soud, W., and Rådström, P. (2001) Purification and characterization of PCR-inhibitory components in blood cells. J. Clin. Microbiol. 39, 485–493.

    Article  Google Scholar 

  6. Lantz, P.-G., Matsson, M., Wadström, T., and Rådström, P. (1997) Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. J. Microbiol. Methods 28, 159–167.

    Article  CAS  Google Scholar 

  7. Monteiro, L., Bonnemaison, D., Vekris, A., et al. (1997) Complex polysaccha-rides as PCR inhibitors in feces: Helicobacter pylori model. J. Clin. Microbiol. 35, 995–998.

    PubMed  CAS  Google Scholar 

  8. Kim, C. H., Khan, M., Morin, D. E., et al. (2001) Optimization of the PCR for detection of Staphylococcus aureus nuc gene in bovine milk. J. Dairy Sci. 84, 74–83.

    Article  PubMed  CAS  Google Scholar 

  9. Akane, A., Matsubara, K., Nakamura, H., Takahashi, S. and Kimura, K. (1994) Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J. Forensic Sci. 39, 362–372.

    PubMed  CAS  Google Scholar 

  10. Tsai, Y. L., and Olson, B. H. (1992) Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl. Environ. Microbiol. 58, 2292–2295.

    PubMed  CAS  Google Scholar 

  11. Powell, H. A., Gooding, C. M., Garret, S. D., Lund, B. M., and McKee, R.A. (1994) Proteinase inhibition of the detection of Listeria monocytogenes in milk using the polymerase chain reaction. J. Clin. Microbiol. 18, 59–61.

    CAS  Google Scholar 

  12. Khan, G., Kangro, H. O., Coates, P. J., and Heath, R. B. (1991) Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J. Clin. Pathol. 44, 360–365.

    Article  PubMed  CAS  Google Scholar 

  13. Abu Al-Soud, W. A., Jönsson, L. J., and Rådström, P. (2000) Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J. Clin. Microbiol. 38, 345–350.

    Google Scholar 

  14. Byrnes, J. J., Downey, K. M., Esserman, L., and So, A.G. (1975) Mechanism of hemin inhibition of erythroid cytoplasmic DNA polymerase. Biochemistry 14, 796–799.

    Article  PubMed  CAS  Google Scholar 

  15. Jaffe, R. I., Lane, J. D., and Bates, C.W. (2001) Real-time identification of Pseudomonas aeruginosa direct from clinical samples using a rapid extraction method and polymerase chain reaction (PCR). J. Clin. Lab. Anal. 15, 131–137.

    Article  PubMed  CAS  Google Scholar 

  16. Bailey, J. S. (1998) Detection of Salmonella cells within 24 to 26 hours in poul-try samples with the polymerase chain reaction BAX system. J. Food Prot. 61, 792–795.

    PubMed  CAS  Google Scholar 

  17. Dahlenborg, M., Borch, E., and Rådström, P. (2001) Development of a combined selection and enrichment PCR procedure for Clostridium botulinum types B, E and F and its use to determine prevalence in fecal samples from slaughter pigs. Appl. Environ. Microbiol. 67, 4781–4789.

    Article  PubMed  CAS  Google Scholar 

  18. Fahle, G. A., and Fischer, S. H. (2000) Comparison of six commercial DNA extraction kits for recovery of cytomegalovirus DNA from spiked human speci-mens. J. Clin. Microbiol. 38, 3860–3863.

    PubMed  CAS  Google Scholar 

  19. Freise, J., Gerard, H. C., Bunke, T., et al. (2001) Optimised sample DNA prepara-tion for detection of Chlamydia trachomatis in synovial tissue by polymerase chain reaction and ligase chain reaction. Ann. Rheum. Dis. 60, 140–145.

    Article  PubMed  CAS  Google Scholar 

  20. Lantz, P. G., Knutsson, R., Blixt, Y., Al Soud, W. A., Borch, E., and Rådström, P. (1998) Detection of pathogenic Yersinia enterocolitica in enrichment media and pork by a multiplex PCR: a study of sample preparation and PCR-inhibitory com-ponents. Int. J. Food Microbiol. 45, 93–105.

    Article  PubMed  CAS  Google Scholar 

  21. Shafer, R. W., Levee, D. J., Winters, M. A., Richmond, K. L., Huang, D. and Merigan, T. C. (1997) Comparison of QIAamp HCV kit spin columns, silica beads, and phenol-chloroform for recovering human immunodeficiency virus type 1 RNA from plasma. J. Clin. Microbiol. 35, 520–522.

    PubMed  CAS  Google Scholar 

  22. Kramvis, A., Bukofzer, S., and Kew, M. C. (1996) Comparison of hepatitis B virus DNA extractions from serum by the QIAamp blood kit, GeneReleaser, and the phenol-chloroform method. J. Clin. Microbiol. 34, 2731–2733.

    PubMed  CAS  Google Scholar 

  23. Hallier-Soulier, S., and Guillot, E. (1999) An immunomagnetic separation poly-merase chain reaction assay for rapid and ultra-sensitive detection of Cryptosporidium parvum in drinking water. FEMS Microbiol. Lett. 176, 285–289.

    Article  PubMed  CAS  Google Scholar 

  24. Antognoli, M. C., Salman, M. D., Triantis, J., Hernandez, J., and Keefe, T. (2001) A one-tube nested polymerase chain reaction for the detection of Mycobacterium 47 bovis in spiked milk samples: an evaluation of concentration and lytic techniques. J. Vet. Diagn. Invest. 13, 111–116.

    PubMed  CAS  Google Scholar 

  25. Jothikumar, N., Cliver, D. O., and Mariam, T.W. (1998) Immunomagnetic cap-ture PCR for rapid concentration and detection of hepatitis A virus from environ-mental samples. Appl. Environ. Microbiol. 64, 504–508.

    PubMed  CAS  Google Scholar 

  26. Lantz, P.-G., Tjerneld, F., Hahn-Hägerdal, B., and Rådström, P. (1996) Use of aqueous two-phase systems in sample preparation for polymerase chain reaction-based detection of microorganisms. J. Chromat. B. 680, 165–170.

    Article  CAS  Google Scholar 

  27. Lindqvist, R., Norling, B., and Lambertz, S.T. (1997) A rapid sample preparation method for PCR detection of food pathogens based on buoyant density centrifu-gation. Lett. Appl. Microbiol. 24, 306–310.

    Article  PubMed  CAS  Google Scholar 

  28. Gerritsen, M. J., Olyhoek, T., Smits, M. A., and Bokhout, B. A. (1991) Sample preparation method for polymerase chain reaction-based semiquantitative detec-tion of Leptospira interrogans serovar hardjo subtype hardjobovis in bovine urine. J. Clin. Microbiol. 29, 2805–2808.

    PubMed  CAS  Google Scholar 

  29. Starbuck, M. A., Hill, P. J., and Stewart, G.S. (1992) Ultra sensitive detection of Listeria monocy to genes in milk by the polymerase chain reaction (PCR). Lett. Appl. Microbiol. 15, 248–252.

    Article  PubMed  CAS  Google Scholar 

  30. Abu Al-Soud, W., Lantz, P.-G., Bäckman, A., Olcén, P., and Rådström, P. (1998) A sample preparation method which facilitates detection of bacteria in blood cul-tures by the polymerase chain reaction. J. Microbiol. Meth. 32, 217–224.

    Article  Google Scholar 

  31. Lindqvist, R. (1997) Preparation of PCR samples from food by a rapid and simple centrifugation technique evaluated by detection of Escherichia coli O157:H7. Int. J. Food Microbiol. 37, 73–82.

    Article  PubMed  CAS  Google Scholar 

  32. Thisted Lambertz, S., Lindqvist, R., Ballagi-Pordány, A. and Danielsson-Tham, M.-L. (2000) A combined culture and PCR method for detection of pathogenic Yersinia enterocolitica in food. Int. J. Food Microbiol. 57, 63–73.

    Article  CAS  Google Scholar 

  33. Sharma, V. K., and Carlson, S.A. (2000) Simultaneous detection of Salmonella strains and Escherichia coli O157:H7 with fluorogenic PCR and single-enrich-ment-broth culture. Appl. Environ. Microbiol. 66, 5472–5476.

    Article  PubMed  CAS  Google Scholar 

  34. Knutsson, R., Blixt, Y., Grage, H., Borch, E., and Rådström, P. (2002) Evaluation of selective enrichment PCR procedures for Yersinia enterocolitica. Int. J. Food Microbiol. 73, 35–46.

    Article  CAS  Google Scholar 

  35. Minton, A. P., and Wilf, J. (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20, 4821–4826.

    Article  PubMed  CAS  Google Scholar 

  36. Zimmerman, S. B., and Trach, S. O. (1988) Macromolecular crowding extends the range of conditions under which DNA polymerase is functional. Biochim. Biophys. Acta. 949, 297–304.

    PubMed  CAS  Google Scholar 

  37. Saiki, R. K., Scharf, S., Faloona, F., et al. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  38. Saiki, R. K., Gelfand, D. H., Stoffel, S., et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  39. Katcher, H. L., and Schwartz, I. (1994) A distinctive property of Tth DNA poly-merase: enzymatic amplification in the presence of phenol. Biotechniques 16, 84–92.

    PubMed  CAS  Google Scholar 

  40. Zsolnai, A., and Fesus, L. (1997) Enhancement of PCR-RFLP typing of bovine leukocyte adhesion deficiency. Biotechniques 23, 380–382.

    PubMed  CAS  Google Scholar 

  41. Diakou, A., and Dovas, C.I. (2001) Optimization of random-amplified polymor-phic DNA producing amplicons up to 8500 bp and revealing intraspecies poly-morphism in Leishmania infantum isolates. Anal. Biochem. 288, 195–200.

    Article  PubMed  CAS  Google Scholar 

  42. Hendolin, P. H., Paulin, L., and Ylikoski, J. (2000) Clinically applicable multi-plex PCR for four middle ear pathogens. J. Clin. Microbiol. 38, 125–132.

    PubMed  CAS  Google Scholar 

  43. Haag, E., and Raman, V. (1994) Effects of primer choice and source of Taq DNA polymerase on the banding patterns of differential display RT-PCR. Biotechniques 17, 226–228.

    PubMed  CAS  Google Scholar 

  44. Gál, J., Schnell, R. and Kálmán, M. (2000) Polymerase dependence of autosticky polymerase chain reaction. Anal. Biochem. 282, 156–158.

    Article  PubMed  Google Scholar 

  45. Tebbe, C. C., and Vahjen, W. (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. 59, 2657–2665.

    PubMed  CAS  Google Scholar 

  46. Favre, N., and Rudin, W. (1996) Salt-dependent performance variation of DNA polymerases in co-amplification PCR. Biotechniques 21, 28–30.

    PubMed  CAS  Google Scholar 

  47. Wiedbrauk, D. L., Werner, J. C., and Drevon, A. M. (1995) Inhibition of PCR by aqueous and vitreous fluids. J. Clin. Microbiol. 33, 2643–2646.

    PubMed  CAS  Google Scholar 

  48. Poddar, S. K., Sawyer, M. H., and Connor, J. D. (1998) Effect of inhibitors in clinical specimens on Taq and Tth DNA polymerase-based PCR amplification of influenza A virus. J. Med. Microbiol. 47, 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  49. Akalu, A., and Reichardt, J. K. (1999) A reliable PCR amplification method for microdissected tumor cells obtained from paraffin-embedded tissue. Genet. Anal. 15, 229–233.

    PubMed  CAS  Google Scholar 

  50. Panaccio, M., and Lew, A. (1991) PCR based diagnosis in the presence of 8% (v/v) blood. Nucleic Acids Res. 19, 1151.

    Article  PubMed  CAS  Google Scholar 

  51. Kebelmann-Betzing, C., Seeger, K., Dragon, S., et al. (1998) Advantages of a new Taq DNA polymerase in multiplex PCR and time-release PCR. Biotechniques 24, 154–158.

    PubMed  CAS  Google Scholar 

  52. Moretti, T., Koons, B., and Budowle, B. (1998) Enhancement of PCR amplifica-tion yield and specificity using AmpliTaq Gold DNA polymerase. Biotechniques 25, 716–722.

    PubMed  CAS  Google Scholar 

  53. Shames, B., Fox, J. G., Dewhirst, F., Yan, L., Shen, Z., and Taylor, N. S. (1995) Identification of widespread Helicobacter hepaticus infection in feces in commer-cial mouse colonies by culture and PCR assay. J. Clin. Microbiol. 33, 2968–2972.

    PubMed  CAS  Google Scholar 

  54. Kainz, P., Schmiedlechner, A. and Strack, H. B. (2000) Specificity-enhanced hot-start PCR: addition of double-stranded DNA fragments adapted to the annealing temperature. Biotechniques 28, 278–282.

    PubMed  CAS  Google Scholar 

  55. Kainz, P. (2000) The PCR plateau phase-towards an understanding of its limita-tions. Biochim. Biophys. Acta. 1494, 23–27.

    PubMed  CAS  Google Scholar 

  56. Laigret, F., Deaville, J., Bove, J. M., and Bradbury, J. M. (1996) Specific detec-tion of Mycoplasma iowae using polymerase chain reaction. Mol. Cell. Probes 10, 23–29.

    Article  PubMed  CAS  Google Scholar 

  57. Pomp, D., and Medrano, J. F. (1991) Organic solvents as facilitators of poly-merase chain reaction. Biotechniques 10, 58–59.

    PubMed  CAS  Google Scholar 

  58. Abu Al-Soud, W. (2000) Optimisation of diagnostic PCR: A study of PCR inhibi-tors in blood and sample pretreatment. Doctoral thesis. Department of Applied Microbiology, Lund University, Lund, Sweden.

    Google Scholar 

  59. Kreader, C. A. (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62. 1102–1106.

    PubMed  CAS  Google Scholar 

  60. Tsutsui, K., and Mueller, G.C. (1987) Hemin inhibits virion-associated reverse tran-scriptase of murine leukemia virus. Biochem. Biophys. Res. Commun. 149, 628–634.

    Article  PubMed  CAS  Google Scholar 

  61. Abu Al-Soud, W., and Rådström, P. (2000) Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. J. Clin. Microbiol. 38, 4463–4470.

    PubMed  CAS  Google Scholar 

  62. Topal, M. D., and Sinha, N. K. (1983) Products of bacteriophage T4 genes 32 and 45 improve the accuracy of DNA replication in vitro. J. Biol. Chem. 258, 12,274–12,279.

    PubMed  CAS  Google Scholar 

  63. Chandler, D. P., Wagnon, C. A., and Bolton, H., Jr. (1998) Reverse transcriptase (RT) inhibition of PCR at low concentrations of template and its implications for quantitative RT-PCR. Appl. Environ. Microbiol. 64, 669–677.

    PubMed  CAS  Google Scholar 

  64. Jordan, S. P., Zugay, J., Darke, P. L. and Kuo, L. C. (1992) Activity and dimeriza-tion of human immunodeficiency virus protease as a function of solvent composi-tion and enzyme concentration. J. Biol. Chem. 267, 20,028–20,032.

    PubMed  CAS  Google Scholar 

  65. Wu, J. R., and Yeh, Y. C. (1973) Requirement of a functional gene 32 product of bacteriophage T4 in UV.J. Virol. 12, 758–765.

    PubMed  CAS  Google Scholar 

  66. Varadaraj, K., and Skinner, D.M. (1994) Denaturants or cosolvents improve the specificity of PCR amplification of a G+C-rich DNA using genetically engi-neered DNA polymerases. Gene 140, 1–5.

    Article  PubMed  CAS  Google Scholar 

  67. Lee, C. H., Mizusawa, H., and Kakefuda, T. (1981) Unwinding of double-stranded DNA helix by dehydration. Proc. Natl. Acad. Sci. USA 78, 2838–2842.

    Article  PubMed  CAS  Google Scholar 

  68. Dutton, C. M., Paynton, C., and Sommer, S. S. (1993) General method for ampli-fying regions of very high G+C content. Nucleic Acids Res. 21, 2953–2954.

    Article  PubMed  CAS  Google Scholar 

  69. Innis, M. A., Myambo, K. B., Gelfand, D. H., and Brow, M. A. D. (1988) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc. Nat. Acad. Sci. USA 85, 9436–9440.

    Article  PubMed  CAS  Google Scholar 

  70. Frackman, S., Kobs, G., Simpson, D., and Storts, D. (1998) Betaine and DMSO: Enhancing agents for PCR. Promega Notes 27.

    Google Scholar 

  71. Henke, W., Herdel, K., Jung, K., Schnorr, D., and Loening, S.A. (1997) Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res. 25, 3957–3958.

    Article  PubMed  CAS  Google Scholar 

  72. Back, J. F., Oakenfull, D., and Smith, M. B. (1979) Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry 18, 5191–5196.

    Article  PubMed  CAS  Google Scholar 

  73. Nagai, M., Yoshida, A., and Sato, N. (1998) Additive effects of bovine serum albu-min, dithiothreitol, and glycerol on PCR. Biochem. Mol. Biol. Int. 44, 157–163.

    PubMed  CAS  Google Scholar 

  74. Demeke, T., and Adams, R.P. (1992) The effects of plant polysaccharides and buffer additives on PCR. Biotechniques 12, 332–334.

    PubMed  CAS  Google Scholar 

  75. Kim, S., Labbe, R. G., and Ryu, S. (2000) Inhibitory effects of collagen on the PCR for detection of Clostridium perfringens. Appl. Environ. Microbiol. 66, 1213–1215.

    Article  PubMed  CAS  Google Scholar 

  76. Chen, S., Yee, A., Griffiths, M., et al. (1997) The evaluation of a fluorogenic polymerase chain reaction assay for the detection of Salmonella species in food commodities. Int. J. Food. Microbiol. 35, 239–250.

    Article  PubMed  Google Scholar 

  77. Knutsson, R., Fontanesi, F., Grage, H., and Rådström, P. (2001) Development of a PCR-compatible enrichment medium for Yersinia enterocolitica: Amplification precision and dynamic detection range during cultivation. Int. J. Food Microbiol. 72, 185–201.

    Article  Google Scholar 

  78. Grant, K. A., Dickinson, J. H., Payne, M. J., Campbell, S., Collins, M. D., and Kroll, R. G. (1993) Use of the polymerase chain reaction and 16S rRNA sequences for the rapid detection of Brochothrix spp. in foods. J. Appl. Bacteriol. 74, 260–267.

    Google Scholar 

  79. Klein, P. G., and Juneja, V. K. (1997) Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR. Appl. Environ. Microbiol. 63, 4441–4448.

    PubMed  CAS  Google Scholar 

  80. Nordvåg, B., Riise, H., Husby, G., Nilsen, I., and El-Gewely, M. R. (1995) Direct use of blood in PCR. Methods Neurosci. 26, 15–25.

    Article  Google Scholar 

  81. Seesod, N., Lundeberg, J., Hedrum, A., et al. (1993) Immunomagnetic purifica-tion to facilitate DNA diagnosis of Plasmodium falciparum. J. Clin. Microbiol. 31, 2715–2719.

    PubMed  CAS  Google Scholar 

  82. Lantz, P.-G., Tjerneld, F., Borch, E., Hahn-Hägerdal, B., and Rådström, P. (1994) Enhanced sensitivity in PCR detection of Listeria monocy to genes in soft cheese through use of an aqueous two-phase system as a sample preparation method. Appl. Environ. Microbiol. 60, 3416–3418.

    PubMed  CAS  Google Scholar 

  83. Giambernardi, T. A., Rodeck, U., and Klebe, R. J. (1998) Bovine serum albumin reverses inhibition of RT-PCR by melanin. Biotechniques 25, 564–566.

    PubMed  CAS  Google Scholar 

  84. sidhu, M. K., Liao, M. J., and Rashidbaigi, A. (1996) Dimethyl sulfoxide improves RNA amplification. Biotechniques 21, 44–47.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rådström, P., Knutsson, R., Wolffs, P., Dahlenborg, M., Löfström, C. (2003). Pre-PCR Processing of Samples. In: Sachse, K., Frey, J. (eds) PCR Detection of Microbial Pathogens. Methods in Molecular Biology™, vol 216. Humana Press. https://doi.org/10.1385/1-59259-344-5:31

Download citation

  • DOI: https://doi.org/10.1385/1-59259-344-5:31

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-049-6

  • Online ISBN: 978-1-59259-344-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics