Skip to main content
Log in

Nonautonomous and Random Attractors

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

The theories of nonautonomous and random dynamical systems have undergone extensive, often parallel, developments in the past two decades. In particular, new concepts of nonautonomous and random attractors have been introduced. These consist of families of sets that are mapped onto each other as time evolves and have two forms: a forward attractor based on information about the system in the future and a pullback attractor that uses information about the past of the system. Both reduce to the usual attractor consisting of a single set in the autonomous case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Perhaps Urzeitattraktor would be an appropriate name for a pullback attractor in German.

  2. The term metric or metrical is often used in the literature for historical reasons.

References

  1. Arnold, L.: Random dynamical systems (Zufällige dynamische Systeme). Jahresber. Dtsch. Math.-Ver. 96, 85–100 (1994)

    Google Scholar 

  2. Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998)

    Book  Google Scholar 

  3. Arnold, L., Schmalfuß, B.: Lyapunov’s second method for random dynamical systems. J. Differ. Equ. 177, 235–265 (2001)

    Article  Google Scholar 

  4. Callaway, M.: On attractors, spectra and bifurcations of random dynamical systems. Ph.D. Thesis, Imperial College London (2014)

  5. Caraballo, T., Crauel, H., Langa, J.A., Robinson, J.C.: The effect of noise on the Chafee-Infante equation: a nonlinear case study. Proc. Am. Math. Soc. 135, 373–382 (2007)

    Article  MathSciNet  Google Scholar 

  6. Caraballo, T., Kloeden, P.E., Langa, J.A.: Atractores globales para sistemas diferenciales no autonomos. Cubo Mat. Educ. 5, 305–329 (2003)

    Google Scholar 

  7. Caraballo, T., Kloeden, P.E., Schmalfuß, B.: Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl. Math. Optim. 50, 183–207 (2004)

    Article  MathSciNet  Google Scholar 

  8. Caraballo, T., Lukaszewicz, G., Real, J.: Pullback attractors for asymptotically compact nonautonomous dynamical systems. Nonlinear Anal. (TMA) 64, 484–498 (2006)

    Article  MathSciNet  Google Scholar 

  9. Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors of Infinite Dimensional Nonautonomous Dynamical Systems. Springer, Berlin (2012)

    Google Scholar 

  10. Cheban, D.N., Kloeden, P.E., Schmalfuß, B.: The relationship between pullback, forward and global attractors of nonautonomous dynamical systems. Nonlinear Dyn. Syst. Theory 2, 125–144 (2002)

    MathSciNet  Google Scholar 

  11. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. American Mathematical Society, Providence (2002)

    Google Scholar 

  12. Crauel, H.: Global random attractors are uniquely determined by attracting deterministic compact sets. Ann. Mat. Pura Appl., IV. Ser. CLXXVI, 57–72 (1999)

    Article  MathSciNet  Google Scholar 

  13. Crauel, H.: Random point attractors versus random set attractors. J. Lond. Math. Soc., II Ser. 63, 413–427 (2001)

    Article  MathSciNet  Google Scholar 

  14. Crauel, H.: Random Probability Measures on Polish Spaces. Taylor & Francis, London and New York (2002)

    Google Scholar 

  15. Crauel, H.: Measure attractors and Markov attractors. Dyn. Syst. 23, 75–107 (2008)

    Article  MathSciNet  Google Scholar 

  16. Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dyn. Differ. Equ. 9, 307–341 (1997)

    Article  MathSciNet  Google Scholar 

  17. Crauel, H., Dimitroff, G., Scheutzow, M.: Criteria for strong and weak random attractors. J. Dyn. Differ. Equ. 21, 233–247 (2009)

    Article  MathSciNet  Google Scholar 

  18. Crauel, H., Hoang Duc, L., Siegmund, S.: Towards a Morse theory for random dynamical systems. Stoch. Dyn. 4, 277–296 (2004)

    Article  MathSciNet  Google Scholar 

  19. Crauel, H., Flandoli, F.: Attractors for random dynamical systems. Probab. Theory Relat. Fields 100, 365–393 (1994)

    Article  MathSciNet  Google Scholar 

  20. Crauel, H., Flandoli, F.: Additive noise destroys a pitchfork bifurcation. J. Dyn. Differ. Equ. 10, 259–274 (1998)

    Article  MathSciNet  Google Scholar 

  21. Crauel, H., Flandoli, F.: Hausdorff dimension of invariant sets for random dynamical systems. J. Dyn. Differ. Equ. 10, 449–473 (1998)

    Article  MathSciNet  Google Scholar 

  22. Dafermos, C.M.: An invariance principle for compact processes. J. Differ. Equ. 9, 239–252 (1971)

    Article  MathSciNet  Google Scholar 

  23. Debussche, A.: On the finite dimensionality of random attractors. Stoch. Anal. Appl. 15, 473–491 (1997)

    Article  MathSciNet  Google Scholar 

  24. Debussche, A.: Hausdorff dimension of a random invariant set. J. Math. Pures Appl. 77, 967–988 (1998)

    Article  MathSciNet  Google Scholar 

  25. Doan, T.S., Rasmussen, M., Kloeden, P.E.: The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete Contin. Dyn. Syst., Ser. B 20, 875–887 (2015)

    Article  MathSciNet  Google Scholar 

  26. Efendiev, M.: Attractors for Degenerate Parabolic Type Equations. American Math. Soc., Providence (2013)

    Book  Google Scholar 

  27. Grüne, L., Kloeden, P.E., Siegmund, S., Wirth, F.R.: Lyapunov’s second method for nonautonomous differential equations. Discrete Contin. Dyn. Syst., Ser. A 18, 375–403 (2007)

    Article  Google Scholar 

  28. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    Google Scholar 

  29. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)

    Google Scholar 

  30. Johnson, R.A., Kloeden, P.E., Pavani, R.: Two-step transition in nonautonomous bifurcations: an explanation. Stoch. Dyn. 2, 67–92 (2002)

    Article  MathSciNet  Google Scholar 

  31. Keller, H., Ochs, G.: Numerical approximation of random attractors. In: Crauel, H., Gundlach, V.M. (eds.) Stochastic Dynamics, pp. 93–115. Springer, New York (1999)

    Chapter  Google Scholar 

  32. Khasminskii, R.: Stochastic Stability of Differential Equations, 2nd edn. Springer, Heidelberg (2012)

    Book  Google Scholar 

  33. Kloeden, P.E.: Pullback attractors in nonautonomous difference equations. J. Differ. Equ. Appl. 6, 91–102 (2000)

    Article  MathSciNet  Google Scholar 

  34. Kloeden, P.E.: A Lyapunov function for pullback attractors of nonautonomous differential equations. Electron. J. Differ. Equ. 05, 91–102 (2000)

    MathSciNet  Google Scholar 

  35. Kloeden, P.E.: Pullback attractors of nonautonomous semidynamical systems. Stoch. Dyn. 3, 101–112 (2003)

    Article  MathSciNet  Google Scholar 

  36. Kloeden, P.E.: Pitchfork and transcritical bifurcations in systems with homogeneous nonlinearities and an almost periodic time coefficient. Commun. Pure Appl. Anal. 3, 161–173 (2004)

    Article  MathSciNet  Google Scholar 

  37. Kloeden, P.E., Keller, H., Schmalfuß, B.: Towards a theory of random numerical dynamics. In: Crauel, H., Gundlach, V.M. (eds.) Stochastic Dynamics, pp. 259–282. Springer, New York (1999)

    Chapter  Google Scholar 

  38. Kloeden, P.E., Kozyakin, V.S.: Uniform nonautonomous attractors under discretization. Discrete Contin. Dyn. Syst. 10 (1 & 2), 423–433 (2004)

    MathSciNet  Google Scholar 

  39. Kloeden, P.E., Langa, J.A.: Flattening, squeezing and the existence of random attractors. Proc. R. Soc. Lond., Ser. A 463, 163–181 (2007)

    Article  MathSciNet  Google Scholar 

  40. Kloeden, P.E., Lorenz, J.: Stable attracting sets in dynamical systems and in their one-step discretizations. SIAM J. Numer. Anal. 23, 986–995 (1986)

    Article  MathSciNet  Google Scholar 

  41. Kloeden, P.E., Lorenz, T.: Stochastic differential equations with nonlocal sample dependence. Stoch. Anal. Appl. 28, 937–945 (2010)

    Article  MathSciNet  Google Scholar 

  42. Kloeden, P.E., Lorenz, T.: Mean-square random dynamical systems. J. Differ. Equ. 253, 1422–1438 (2012)

    Article  MathSciNet  Google Scholar 

  43. Kloeden, P.E., Lorenz, T.: Pullback and forward attractors of nonautonomous difference equations. In: Bohner, M., Ding, Y., Dosly, O. (eds.) Proc. ICDEA Wuhan 2014. Springer, Heidelberg (2015)

    Google Scholar 

  44. Kloeden, P.E., Lorenz, T.: Construction of nonautonomous forward attractors. Proc. Am. Math. Soc. Published online on May 28, 2015. doi:10.1090/proc/12735

  45. Kloeden, P.E., Pötzsche, C., Rasmussen, M.: Limitations of pullback attractors of processes. J. Differ. Equ. Appl. 18, 693–701 (2012)

    Article  Google Scholar 

  46. Kloeden, P.E., Rasmussen, M.: Nonautonomous Dynamical Systems. Amer. Math. Soc., Providence (2011)

    Book  Google Scholar 

  47. Kloeden, P.E., Marín-Rubio, P.: Negatively invariant sets and entire solutions. J. Dyn. Differ. Equ. 23, 437–450 (2011)

    Article  Google Scholar 

  48. Kloeden, P.E., Schmalfuß, B.: Lyapunov functions and attractors under variable time-step discretization. Discrete Contin. Dyn. Syst. 2, 163–172 (1996)

    Article  Google Scholar 

  49. Kloeden, P.E., Schmalfuß, B.: Cocycle attractors of variable time–step discretizations of Lorenzian systems. J. Differ. Equ. Appl. 3, 125–145 (1997)

    Article  Google Scholar 

  50. Kloeden, P.E., Siegmund, S.: Bifurcation and continuous transition of attractors in autonomous and nonautonomous systems. Int. J. Bifurc. Chaos 15, 743–762 (2005)

    Article  MathSciNet  Google Scholar 

  51. Krasnosel’skii, M.A.: The Operator of Translation along Trajectories of Differential Equations. Translations of Mathematical Monographs, vol. 19. Amer. Math. Soc., Providence (1968)

    Google Scholar 

  52. Ledrappier, F.: Positivity of the exponent for stationary sequences of matrices. In: Arnold, L., Wihstutz, V. (eds.) Lyapunov Exponents, Bremen, 1984. Lecture Notes in Math., vol. 1186, pp. 56–73. Springer, Berlin (1986)

    Chapter  Google Scholar 

  53. Ochs, G.: Weak random attractors. Report Nr. 449, Institut für Dynamische Systeme, Universität Bremen (1999)

  54. Rasmussen, M.: Attractivity and Bifurcation for Nonautonomous Dynamical Systems. Lecture Notes in Mathematics, vol. 1907. Springer, Heidelberg (2007)

    Google Scholar 

  55. Rasmussen, M.: Morse decompositions of nonautonomous dynamical systems. Trans. Am. Math. Soc. 359, 5091–5115 (2007)

    Article  MathSciNet  Google Scholar 

  56. Romeiras, F., Grebogi, C., Ott, E.: Multifractal properties of snapshot attractors of random maps. Phys. Rev. A 41, 784–799 (1990)

    Article  MathSciNet  Google Scholar 

  57. Scheutzow, M.: Comparison of various concepts of a random attractor: a case study. Arch. Math. 78, 233–240 (2002)

    Article  MathSciNet  Google Scholar 

  58. Schmalfuß, B.: Backward cocycles and attractors of stochastic differential equations. In: Reitmann, V., Riedrich, T., Koksch, N. (eds.) International Seminar on Applied Mathematics—Nonlinear Dynamics: Attractor Approximation and Global Behaviour, pp. 185–192. Technische Universität Dresden, Dresden (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Crauel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crauel, H., Kloeden, P.E. Nonautonomous and Random Attractors. Jahresber. Dtsch. Math. Ver. 117, 173–206 (2015). https://doi.org/10.1365/s13291-015-0115-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-015-0115-0

Keywords

Mathematics Subject Classification (2010)

Navigation