Skip to main content
Log in

Characteristics of Early Earth’s Critical Zone Based on Middle—Late Devonian Paleosol Properties (Voronezh High, Russia)

  • Published:
Clays and Clay Minerals

Abstract

Land colonization with vascular plants during the late Silurian—early Devonian and then arborescence during the Pragian—Givetian caused the development of new soil types. These true-rooted soils increased the rate of pedogenesis on a global scale. Since that time, soil has become a key component of the biosphere and has given rise to profound development of the Earth’s Critical Zone (CZ). Case studies of Devonian CZs have helped to record the transformation from Precambrian—Lower Paleozoic ‘proto-CZs,’ which had insufficient proto-soil cover, to modern soils with true-rooted pedosphere. Devonian (Givetian—Frasnian) paleosols from the Voronezh region of Russia are combined into pedocomplexes which occupied the top, slope, and bottom positions of a pronounced paleo-relief. Paleosols were developed from terrigenous argillites and volcanigenic-sedimentary deposits. Each pedocomplex consisted of four or more paleosols with different degrees of development and profile preservation. Paleosols exhibited several common characteristics including production and translocation of clay, ferruginization and the presence of siderite nodules, enhanced MnO/Al2O3 and (Fe2O{3}+MnO)/Al2O3 values, and in situ roots and root-system traces. The latter are siderite/goethite substituted. Stable isotope analysis of siderite shows δ13C values of between -6.1 and -13.7% indicating that CO2 had originated from C3 plants. The main mineral component of clay fractions in automorphic paleosols (top and slope of the paleorelief) is kaolinite. The important feature of these paleosols is the red-stained hematite-rich layer in their bases. These horizons developed at different depths and with different thicknesses, and marked the paleo-groundwater tables of each sub-CZ. Evidence of the imprints of vegetation is seen in the abundant in situ roots, plant fragments, and spores of rhyniophytes, lycopsids, progymnosperms, cladoxylalean ferns, and phytoleims of algae-like vascular plants. The near-equatorial location and the overall characteristics of paleosols studied suggest that the aforementioned horizons were formed in a tropically warm and humid climate. The paleo-ecological environments which accompanied pedogenesis were probably controlled by tectonic activity and volcanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekseev, A.O., Kabanov, P.B., Alekseeva, T.V., and Kalinin, P.I. (2015) Magnetic susceptibility and geochemical characterization of a Late Mississippian cyclothemic section Polotnyanyi Zavod, (Moscow Basin, Russia). Pp. 181–196 in: Magnetic Susceptibility Application: A Window onto Ancient Environments and Climatic Variations (A.C. Da Silva, M.T. Whalen, J. Hladil, L. Chadimova, D. Chen, S. Spassov, F. Boulvain and X. Devleeschouwer, editors). Special Publications, 414, Geological Society, London.

    Google Scholar 

  • Alekseeva, V.A. (2005) Micromorphology of quartz grain surface as indicator of glacial sedimentation conditions: evidence from the Protva river basin. Lithology and Mineral Resources, 40, 420–428.

    Article  Google Scholar 

  • Algeo, T.A. and Scheckler, S. E. (1998) Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Royal Society of London Philosophical Transactions (B): Biological Sciences, 353, 113–130.

    Article  Google Scholar 

  • Amundson, R., Richter, D.D., Humphreys, G.S., Jobbagy, E.G., and Gaillardet, J. (2007) Coupling between biota and earth materials in the Critical Zone. Elements, 3, 327–332.

    Article  Google Scholar 

  • Berner, R.A. (2004) The Phanerozoic Carbon Cycle: CO2 and O2. Oxford University Press, Oxford, New York.

    Google Scholar 

  • Brasier, A.T., Morris, J.L., and Hillier, R.D. (2014) Carbon isotopic evidence for organic matter oxidation in soils of the Old Red Sandstone (Silurian to Devonian, South Wales, UK). Journal of the Geological Society (London), 171, 621–634.

    Article  Google Scholar 

  • Broushkin, A.V. and Gordenko, N.V. (2009) Istchenkophyton filiciforme gen. et sp. nov., a new small vascular plant with thick cuticle from the Devonian of Voronezh Region (European Russia). Paleontological Journal, 43, 1202–1216.

    Article  Google Scholar 

  • Broushkin, A.V. and Gordenko, N.V. (2016) Devonian flora of Middle—Lower Povolz’e. Phytodiversity of Eastern Europe, 1, 14–32 (in Russian).

    Google Scholar 

  • Chipera, S.J. and Bish, D.L. (2001) Baselines studies of the Clay Minerals Society source clays: powder X-ray diffraction analyses. Clays and Clay Minerals, 49, 398–409.

    Article  Google Scholar 

  • Chorover, J., Kretzschmar, R., Garcia-Pichel, F., and Sparks, D.L. (2007) Soil biogeochemical processes within the Critical Zone. Elements, 3, 321–326.

    Article  Google Scholar 

  • Cocks, L.R.M. and Torsvik, T.H. (2011) The Palaeozoic geography of Laurentia and western Laurussia: A stable craton with mobile margins. Earth-Science Reviews, 106, 1–51.

    Article  Google Scholar 

  • Cox, J.E., Railsback, L.B., and Gordon, E.A. (2001) Evidence from Catskill pedogenic carbonates for a rapid Late Devonian decrease in atmospheric carbon dioxide concentrations. Northeastern Geology and Environmental Sciences, 23, 91–102.

    Google Scholar 

  • Cressler, W.L. (2006) Plant paleoecology of the Late Devonian Red Hill locality, north-central Pennsylvania, an Archaeopteris-dominated wetland plant community and early tetrapod site. Geological Society of America Special Papers, 79–102.

    Google Scholar 

  • Davies, N.S. and Gibling, M.R. (2010) Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets. Geology, 38, 51–54.

    Article  Google Scholar 

  • Driese, S.G. and Mora, C.I. (1993) Physico-chemical environment of pedogenic carbonate formation in Devonian vertic paleosols, Central Appalachians, USA. Sedimentology, 40, 199–216.

    Article  Google Scholar 

  • Giardino, J.R. and Houser, Ch. (2015) Principles and Dynamics of the Critical Zone, 1st edition. Elsevier, Amsterdam.

    Google Scholar 

  • Griffing, D.H., Bridge, J.S., and Hotton, C.L. (2000) Coastal-fluvial palaeoenvironments and plant palaeoecology of the Lower Devonian (Emsian), Gaspe Bay, Quebec, Canada. Pp. 61–84 in: New Perspectives on the Old Red Sandstone (P.F. Friend and P.B.J. Williams, editors). Geological Society, London, UK.

    Google Scholar 

  • Hillier, R.D., Edwards, D., and Morrissey, L.B. (2008) Sedimentological evidence for rooting structures in the Early Devonian Anglo-Welsh Basin (UK), with speculation on their producers. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 366–380.

    Article  Google Scholar 

  • Istchenko, T.A. and Istchenko, A.A. (1981) Middle Devonian Flora of the Voronezh Anteclise. Naukova Dumka, Kiev (in Russian).

    Google Scholar 

  • Kabanov, P.B., Alekseeva, T.V., Alekseeva, V.A., Alekseev, A.O., and Gubin, S.V. (2010) Paleosols in Late Moscovian (Carboniferous) marine carbonates of the East European Craton revealing “Great calcimagnesian plain” landscapes. Journal of Sedimentary Research, 80, 195–215.

    Article  Google Scholar 

  • Kabanov, P.B., Alekseev, A.O., and Zaitsev, T. (2014) The Late Viséan—Serpukhovian in the type area for the Serpukhovian Stage (Moscow Basin, Russia): Part 2. Bulk geochemistry and magnetic susceptibility. Geological Journal, 51, 195–211.

    Article  Google Scholar 

  • Kalinin, P.I. and Alekseev, A.O. (2011) Geochemical characterization of loess-soil complexes on the Terek-Kuma Plain and the Azov-Kuban’ Lowland. Eurasian Soil Science, 44, 1315–1332.

    Article  Google Scholar 

  • Kornilovich, B.Yu. (1994) Structure and Surface Chemistry of Mechano-Chemical treated Layer Silicates and Carbonates. Naukova Dumka, Kiev, Russia (in Russian).

    Google Scholar 

  • Krassilov, V.A., Raskatova, M.G., and Istchenko, A.A. (1987) A new archaeopteridaliean plant from the Devonian of Pavlovsk, U.S.S.R. Review of Palaeobotany and Palynology, 53, 163–173.

    Article  Google Scholar 

  • Lebedev, O.A., Luksevics, E., and Zakharenko, G.V. (2010) Palaeozoogeographical connections of the Devonian vertebrate communities of the Baltica Province. Palaeoworld, 19, 108–128.

    Article  Google Scholar 

  • Levikh, N.N. (1988) Geneticheskie osobennosti kaolinitov Belorussii. Nauka i technika, Minsk, Russia (in Russian).

    Google Scholar 

  • Lin, H. (2010) Earth’s Critical Zone and hydropedology: concepts, characteristics, and advances. Hydrology and Earth System Sciences, 14, 25–45.

    Article  Google Scholar 

  • Makhlina, M.Kh., Vdovenko, M.V., Alekseev, A.S., Byvsheva, T.V., Donakova, L.M., Zhulitova, V.E., Kononova, L.I., Umnova, N.I., and Shik, E.M. (1993) Nizhniy carbon Moskovskoy sineklizy i Voronezhskoy anteklizy. Nauka, Moscow (in Russian).

    Google Scholar 

  • Marriott, S.B. and Wright, V.P. (1993) Palaeosols as indicators of geomorphic stability in two Old Red Sandstone alluvial suites, South Wales. Journal of the Geological Society (London), 150, 1109–1120.

    Article  Google Scholar 

  • Mintz, J.S., Driese, S.G., and White, J.D. (2010) Environmental and ecological variability of Middle Devonian (Givetian) forests in Appalachian basin paleosols, New York, United States. Palaios, 1, 85–96.

    Article  Google Scholar 

  • Mora, C.I., Driese, S.G., and Colarusso, L.A. (1996) Middle to Late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science, 271, 1105–1107.

    Article  Google Scholar 

  • Morris, J.L., Leake, J.R., Stein, W.E., Berry, Ch.M., Marshall, J.E.A., Wellman, C.H., Milton, J.A., Hillier, S., Mannolini, F., Quirk, J., and Beerling, D.J. (2015) Investigating Devonian trees as geo-engineers of past climates: linking paleosols to palaeobotany and experimental geobiology. Paleontology, 58, 787–801.

    Article  Google Scholar 

  • Nikishin, A.M., Ziegler, P.A., Stephenson, R.A., Cloetingh, S.A.P.L., Furne, A.V., Fokin, P.A., Ershov, A.V., Bolotov, S.N., Korotaev, M.V., Alekseev, A.S., Gorbachev, V.I., Shipilov, E.V., Lankreijer, A., Bembinova, E.Yu., and Shalimov, I.V. (1996) Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution. Tectonophysics, 268, 23–63.

    Article  Google Scholar 

  • Nordt, L.C. and Driese, S.D. (2014) Application of the critical zone concept to the deep-time sedimentary record. The Sedimentary Record, 11, 4–9.

    Article  Google Scholar 

  • Nordt, L.C., Hallmark, C.T., Driese, S.G., Dworkin, S.I., and Atchley, S.C. (2012) Biogeochemical characterization of a lithified paleosol: Implications for the interpretation of ancient Critical Zones. Geochimica et Cosmochimica Acta, 87, 267–282.

    Article  Google Scholar 

  • Quast, A., Hoefs, J., and Paul, J. (2006) Pedogenic carbonates as a proxy for palaeo-CO2 in the Palaeozoic atmosphere. Palaeogeography, Palaeoclimatology, Palaeoecology, 242, 110–125.

    Article  Google Scholar 

  • Raskatova, M.G. (1990) Palinokompleksi pogranichnih Givetian-Frasnian otlozenii Centralnogo Devoskogo polya i Timana. PhD thesis, Moscow State University, Moscow, Russia (in Russian).

    Google Scholar 

  • Raskatova, M.G. (2004) Miosporovaya zonalnost sredneverhnedevonskih otlozeniy ugo-vostochnoi chasti Voronezskoi anteclizi (Pavlovskii kar‘er). Vestnik Voronezskogo Universiteta. Geologia, 2, 289–298 (in Russian).

    Google Scholar 

  • Raven, J.A. and Edwards, D. (2001) Roots: evolutionary origins and biogeochemical significance. Journal of Experimental Botany, Roots special Issue, 52, 381–410.

    Article  Google Scholar 

  • Retallack, G.J. (2001) Soils of the Past: an Introduction to Paleopedology. 2nd edition. Malden, USA, Blackwell Science, Oxford, UK.

    Book  Google Scholar 

  • Retallack, G.J. (2015) Silurian vegetation stature and density inferred from fossil soils and plants in Pennsylvania, USA. Journal of the Geological Society (London), 121, 621–634.

    Google Scholar 

  • Rodionova, G.D., Umnova, V.T., Kononova, L.I., Ovnatanova, N.S., Rzonsnizkaya, M.A., and Fedorova, T.I. (1995) Devon Voronezskoi anteclizi i Moscovskoi sineclizi. Central Regional Geological Survey, Moscow (in Russian).

    Google Scholar 

  • Sheldon, N.D. and Tabor, N.J. (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sciences Review, 95, 1–52.

    Article  Google Scholar 

  • Sheldon, N.D., Retallack, G.J., and Tanaka, S. (2002) Geochemical climofunctions from North American soils and application to Paleosols across the Eocene—Oligocene boundary in Oregon. The Journal of Geology, 110, 687–696.

    Article  Google Scholar 

  • Shevyrev, L.T., Savko, A.D., and Shishov, A.V. (2004) Evoluziya tektonicheskoi structure Voronezhskoi anteklizi i ee endogennii rudogenez. Trudi Voronezhskogo Universiteta, 25, 1–192 (in Russian).

    Google Scholar 

  • Shumilov, I.Ch. (2010) The first discovery of paleosols in green Devonian sediments of middle Timan. Doklady Earth Sciences, 434, 1303–1305.

    Article  Google Scholar 

  • Shumilov, I.Ch. (2013) Preservation conditions of in situ root systems in Devonian sections of the middle Timan region. Lithology and Mineral Resources, 48, 65–73.

    Article  Google Scholar 

  • Shumilov, I.Ch. and Mingalev, A.N. (2009) First find of paleosols in the Devonian red deposits of the middle Timan. Doklady Earth Sciences, 428, 1080–1082.

    Article  Google Scholar 

  • Stein, W.E., Mannolini, F., Hernick, L., Landing, E., and Berry, Ch.M. (2007) Giant Cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa. Nature, 446, 904–907.

    Article  Google Scholar 

  • Stein, W.E., Berry, Ch.M., Hernick, L., and Mannolini, F. (2012) Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature, 483, 78–81.

    Article  Google Scholar 

  • Tabor, N.J. and Myers, T.S. (2015) Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Sciences, 43, 333–361.

    Article  Google Scholar 

  • van Reeuwijk, L.P. (editor) (2002) Procedures for Soil Analysis, (6th edition), ISRIC Technical paper 9, Wageningen, The Netherlands.

    Google Scholar 

  • Weibel, R., Lindstrom, S., Pedersen, G.K., Johansson, L., Dybkjaer, K., and Whitehouse, M.J. (2016) Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata. Sedimentary Geology, 342, 47–65.

    Article  Google Scholar 

  • Wilkinson, M., Haszeldine, R.S., Fallick, A.E., and Osborne, M.J. (2000) Siderite zonation within the Brent Group: microbial influence or aquifer flow? Clay Minerals, 35, 111–121.

    Article  Google Scholar 

  • Zamanian, K., Pustovoytov, K., and Kuzyakov, Y. (2016) Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17.

    Article  Google Scholar 

  • Zavarzin, G.A. (2008) Microbial biosphere. Pp. 25–44 in: Biosphere Origin and Evolution ([edN. Dobretsov, N. Kolchanov, A. Rozanov, and G. Zavarzin}, editors). Springer, Berlin.

    Chapter  Google Scholar 

  • Zolotareva, G.S. (2009) Typomorphism i typochimism Ti-Zr rossipei Voronezhskoi anteklizi kak kriterii reconstrukzii usloviy ih formirovaniya. PhD thesis, Voronezh University, Russia (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Alekseeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, T., Kabanov, P., Alekseev, A. et al. Characteristics of Early Earth’s Critical Zone Based on Middle—Late Devonian Paleosol Properties (Voronezh High, Russia). Clays Clay Miner. 64, 677–694 (2016). https://doi.org/10.1346/CCMN.2016.064044

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2016.064044

Key Words

Navigation