Skip to main content
Log in

Measuring the Layer Charge of Dioctahedral Smectite by O—D Vibrational Spectroscopy

  • Published:
Clays and Clay Minerals

Abstract

Layer charge (LC) is a fundamental property of smectite but its measurement remains challenging and tedious to apply on a high-throughput basis. The present study demonstrates that the position of a sharp, high-energy O—D stretching band of adsorbed D2O (νO—D, at ~2686–2700 cm−1), determined by infrared spectroscopy, correlates with LC and provides a simple method for its measurement. Twenty nine natural dioctahedral smectites and 14 reduced-charge montmorillonites with LC determined previously by different methodologies were saturated with D2O and examined by attenuated total reflectance infrared spectroscopy (ATR-IR). The samples included smectites in Mg, Ca, Na, Li, K, and Cs forms and covered the full range of the smectite LC (0.2 to 0.6 e per formula unit). Statistically significant correlations were found between νO—D and LC values determined with each of the two main methods of LC determination: the structural formula method (R2 = 0.96, σ = 0.02, ~0.2 < LC < 0.6) and the alkylammonium method (R2 = 0.92, σ = 0.01, 0.27 < LC < 0.37). These correlations were based on Li- and Na-saturated smectites, respectively, but other cationic forms can be employed provided that the exchangeable cations are of sufficiently high hydration enthalpy (e.g. Mg2+ or Ca2+, but not K+ or Cs+). The new method is fast, low-cost, implemented easily in laboratories equipped with ATR-FTIR, and applicable to samples as small as ~5 mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, J.L., Pieters, C.M., and Edwards, J.O. (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays and Clay Minerals, 42, 702–716.

    Article  Google Scholar 

  • Bujdák, J. (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Applied Clay Science, 34, 58–73.

    Article  Google Scholar 

  • Bujdák, J., Iyi, N., Kaneko, Y., Czímerová, A., and Sasai, R. (2003) Molecular arrangement of rhodamine 6G cations in the films of layered silicates: the effect of the layer charge. Physical Chemistry Chemical Physics, 5, 4680–4685.

    Article  Google Scholar 

  • Bujdák, J., Iyi, N., and Sasai, R. (2004) Spectral properties, formation of dye molecular aggregates, and reactions in rhodamine 6G/layered silicate dispersions. Journal of Physical Chemistry B, 108, 4470–4477.

    Article  Google Scholar 

  • Bukas, V.J., Tsampodimou, M., Gionis, V., and Chryssikos, G.D. (2013) Synchronous ATR infrared and NIR-spectroscopy investigation of sepiolite upon drying. Vibrational Spectroscopy, 68, 51–60.

    Article  Google Scholar 

  • Christidis, G.E. (2001) Formation and growth of smectites in bentonites: a case study from Kimolos Island, Aegean, Greece. Clays and Clay Minerals, 49, 204–215.

    Article  Google Scholar 

  • Christidis, G.E. (2006) Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocks — A case study from the Troodos Ophiolite Complex, Cyprus. American Mineralogist, 91, 685–701.

    Article  Google Scholar 

  • Christidis, G.E. (2008) Validity of the structural formula method for layer charge determination of smectites: A reevaluation of published data. Applied Clay Science, 42, 1–7.

    Article  Google Scholar 

  • Christidis, G. and Dunham, A.C. (1993) Compositional variations in smectites derived from intermediate volcanic rocks. A case study from Milos Island, Greece. Clay Minerals, 28, 255–273.

    Article  Google Scholar 

  • Christidis, G. and Dunham, A.C. (1997) Compositional variations in smectites. Part II: Alteration of acidic precursors, a case study from Milos Island, Greece. Clay Minerals, 32, 253–270.

    Article  Google Scholar 

  • Christidis, G.E. and Eberl, D.D. (2003) Determination of layercharge characteristics of smectites. Clays and Clay Minerals, 51, 644–655.

    Article  Google Scholar 

  • Christidis, G.E. and Huff, W.D. (2009) Geological aspects and genesis of bentonites. Elements, 5, 93–98.

    Article  Google Scholar 

  • Christidis, G.E., Blum, A.E., and Eberl, D.D. (2006) Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites. Applied Clay Science, 34, 125–138.

    Article  Google Scholar 

  • Cetin, K. and Huff, W.D. (1995) Layer charge of the expandable component of illite/smectite in K-bentonite as determined by alkylammonium ion exchange. Clays and Clay Minerals, 43, 150–158.

    Article  Google Scholar 

  • Čícel, B. and Komadel, P. (1994) Structural formulas of layer silicates. Pp 114–136 in: Quantitative Methods in Soil Mineralogy (J.E. Amonette and L.W. Zelazny, editors). Miscellaneous Publications, Soil Science Society of America, Madison, Wisconsin, USA.

    Google Scholar 

  • Clay Minerals Society Nomenclature Committee (2015) The Clay Minerals Society Glossary for Clay Science, https://doi.org/www.clays.org/GLOSSARY/Clay_Glossary.htm, access August 25, 2015.

  • Cuadros, J. and Dudek, T. (2006) FTIR investigation of the evolution of the octahedral sheet of kaolinite-smectite with progressive kaolinization. Clays and Clay Minerals, 54, 1–11.

    Article  Google Scholar 

  • Czímrerová, A., Bujdák, J., and Dohrmann, R. (2006) Traditional and novel methods for estimating the layer charge of smectites. Applied Clay Science, 34, 2–13.

    Article  Google Scholar 

  • Delavernhe, L., Steudel, A., Darbha, G.K., Schäfer, T., Schuhmann, R., Wöll, C., Geckeis, H., and Emmerich, K. (2015) Influence of mineralogical and morphological properties on the cation exchange behavior of dioctahedral smectites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 591–599.

    Article  Google Scholar 

  • Dohrmann, R., Kaufhold, S., Echle, W., and Meyer, F.M., (1999) Beyond the methylene-blue test: introduction of the Cu(II)-triethylene-tetramine method for smectite estimation in bentonite. Euroclay Meeting, Krakow.

  • Dohrmann, R., Genske, D., Karnland, O., Kaufhold, S., Kiviranta, L., Olsson, S., Plötze, M., Sandén, T., Sellin, P., Svensson, D., and Valter, M. (2012) Interlaboratory CEC and exchangeable cation study of bentonite buffer materials: II. Alternative methods. Clays and Clay Minerals, 60, 176–185.

    Article  Google Scholar 

  • Dudek, T., Cuadros, J., and Fiore, S. (2006) Interstratified kaolinite-smectite: Nature of the layers and mechanism of smectite kaolinization. American Mineralogist, 91, 159–170.

    Article  Google Scholar 

  • Eberl, D.D., Środoń, J., and Northrop H. R. (1986) Potassium fixation in smectite by wetting and drying. Pp 296–326 in: Geochemical Processes at Mineral Surfaces (J.A. Davis and K.F. Hayes, editors). American Chemical Society Symposium Series, 323.

  • Farmer, V.C. and Russell, J.D. (1964) The infrared spectra of layer silicates. Spectrochimica Acta, 20, 1149–1173.

    Article  Google Scholar 

  • Farmer, V.C. and Russell, J.D. (1966) The infrared adsorption spectrometry in clay studies Pp. 121–142 in: Proceedings of 15th National Conference Pittsburgh, Pennsylvania (S.W. Bailey, editor). Pergamon Press, New York, USA.

    Google Scholar 

  • Farmer, V.C. and Russell, J.D. (1971) Interlayer complexes in layer silicates: The structure of water in lamellar ionic solutions. Transactions of the Faraday Society, 67, 2737–2749.

    Article  Google Scholar 

  • Ferrage, E., Lanson, B., Sakharov, B.A., and Drits, V.A. (2005) Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. American Mineralogist, 90, 1358–1374.

    Article  Google Scholar 

  • Ferrage, E., Lanson, B., Sakharov, B.A., Geoffroy, N., Jacquot, E., and Drits, V.A. (2007) Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location. American Mineralogist, 92, 1731–1743.

    Article  Google Scholar 

  • Gates, W.P. (2005) Infrared spectroscopy and the chemistry of dioctahedral smectites. Pp. 126–168 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (J.T. Kloprogge, editor). CMS Workshop Lectures, Vol. 13, The Clay Minerals Society, Boulder, Colorado, USA.

    Google Scholar 

  • Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galán, E., Kogure, T., and Stanjek, H. (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association Internationale pour l’ Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 54, 761–772.

    Article  Google Scholar 

  • Güven, N. (1988) Smectites. Pp 497–559 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C., USA.

    Google Scholar 

  • Harvey, C. and Lagaly, G. (2006) Conventional applications. Pp. 501–540 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Jena, C.J. and Hore, D.K. (2010) Water structure at solid surfaces and its implications for biomolecule adsorption. Physical Chemistry Chemical Physics, 12, 14383–14404.

    Article  Google Scholar 

  • Johnston, C.T. (2010) Probing the nanoscale architecture of clay minerals. Clay Minerals, 45, 245–279.

    Article  Google Scholar 

  • Johnston, C.T., Sposito, G., and Erickson, C. (1992) Vibrational probe studies of water interactions with montmorillonite. Clays and Clay Minerals, 40, 722–730.

    Article  Google Scholar 

  • Kaufhold, S. (2006) Comparison of methods for the determination of the layer charge density (LCD) of montmorillonites. Applied Clay Science, 34, 14–21.

    Article  Google Scholar 

  • Kaufhold, S. and Dohrmann, R. (2013) The variable charge of dioctahedral smectites. Journal of Colloid and Interface Science, 390, 225–233.

    Article  Google Scholar 

  • Kaufhold, S., Dohrmann, R., Ufer, K., and Meyer, F.M. (2002) Comparison of methods for the quantification of montmorillonite in bentonites. Applied Clay Science, 22, 145–151.

    Article  Google Scholar 

  • Kaufhold, S., Dohrmann, R., Stucki, J.W., and Anastacio, A.S. (2011) Layer charge density of smectites — closing the gap between the structural formula method and the alkyl ammonium method. Clays and Clay Minerals, 59, 200–211.

    Article  Google Scholar 

  • Kuligiewicz, A., Derkowski, A., Szczerba, M., Gionis, V., and Chryssikos, G.D. (2015) Revisiting the infrared spectrum of the water-smectite interface. Clays and Clay Minerals, 63, 15–29.

    Article  Google Scholar 

  • Lagaly, G. (1981) Characterization of clays by organic compounds. Clay Minerals, 16, 1–21.

    Article  Google Scholar 

  • Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 1–47 in: Layer Charge Characteristics of 2:1 Silicate Clay Minerals (A.R. Mermut, editor). CMS Workshop Lectures, Vol. 6, The Clay Minerals Society, Aurora, Colorado, USA.

    Google Scholar 

  • Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates. Pp. 61–80 in: Proceedings of the International Clay Conference, Tokyo (L. Heller and N.G. Kaigi, editors), 1, Israel University Press, Jerusalem.

    Google Scholar 

  • Laird, D.A. (1994) Evalutation of structural formulae and alkylammonium methods of determining layer charge. Pp. 79–103 in: Layer Charge Characteristics of 2:1 Silicate Clay Minerals (A.R. Mermut, editor). CMS Workshop Lectures, Vol. 6, The Clay Minerals Society, Aurora, Colorado, USA.

    Google Scholar 

  • Laird, D.A. (1999) Layer charge influences on the hydration of expandable 2:1 phyllosilicates. Clays and Clay Minerals, 47, 630–636.

    Article  Google Scholar 

  • Laird, D.A. (2006) Influence of layer charge on swelling of smectites. Applied Clay Science, 34, 74–87.

    Article  Google Scholar 

  • Laird, D.A., Scott, A.D., and Fenton, T.E. (1989) Evaluation of the alkylammonium method of determining layer charge. Clays and Clay Minerals, 37, 41–46.

    Article  Google Scholar 

  • Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 1–10.

    Article  Google Scholar 

  • Madejová, J., Janek, M., Komadel, P., Herbert, H.-J., and Moog, H.C. (2002) FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Applied Clay Science, 20, 255–271.

    Article  Google Scholar 

  • Mermut, A.R. (1994) Problems associated with layer charge characterization of 2:1 phyllosilicates. Pp. 105–123 in: Layer Charge Characteristics of 2:1 Silicate Clay Minerals (A.R. Mermut, editor). CMS Workshop Lectures, Vol. 6, The Clay Minerals Society, Aurora, Colorado, USA.

    Google Scholar 

  • Odom, I.E. (1984) Smectite clay minerals: properties and uses. Philosophical Transactions of The Royal Society A, 311, 391–409.

    Article  Google Scholar 

  • Onodera, Y., Iwasaki, T., Ebina, T., Hayashi, H., Torii, K., Chatterjee, A., and Mumura, H. (1998) Effect of layer charge on fixation of cesium ions in smectites. Journal of Contaminant Hydrology, 35, 131–140.

    Article  Google Scholar 

  • Olis, A.C., Malla, P.B., and Douglas, L.A. (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Minerals, 25, 39–50.

    Article  Google Scholar 

  • Pentrák, M., Czímrerová, A., Madejová, J., and Komadel, P. (2012) Changes in layer charge of clay minerals upon acid treatment as obtained from their interactions with methylene blue. Applied Clay Science, 55, 100–107.

    Article  Google Scholar 

  • Petit, S., Righi, D., Madejová, J., and Decarreau, A. (1998) Layer charge estimation of smectites using infrared spectroscopy. Clay Minerals, 33, 579–591.

    Article  Google Scholar 

  • Petit, S., Righi, D., and Madejová, J. (2006) Infrared spectroscopy of NH +4 -bearing and saturated clay minerals: A review of the study of layer charge. Applied Clay Science, 34, 22–30.

    Article  Google Scholar 

  • Ruehlicke, G. and Kohler, E.E. (1981) A simplified procedure for determining layer charge by the n-alkylammonium method. Clay Minerals, 16, 305–307.

    Article  Google Scholar 

  • Russell, J.D., Farmer, V.C., and Velde, B. (1970) Replacement of OH by OD in layer silicates, and identification of vibrations of these groups in infra-red spectra. Mineralogical Magazine, 37, 869–879.

    Article  Google Scholar 

  • Scatena, L.F., Brown, M.G., and Richmond, G.L. (2001) Water at hydrophobic surfaces: Weak hydrogen bonding and strong orientation effects. Science, 292, 908–912.

    Article  Google Scholar 

  • Schoonheydt, R. and Johnston, C. (2006) Surface and interface chemistry of clay minerals. Pp. 87–113 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Skiba, M. (2013) Evolution of dioctahedral vermiculite in geological environments — an experimental approach. Clays and Clay Minerals, 61, 290–302.

    Article  Google Scholar 

  • Skoubris, E.N., Chryssikos, G.D., Christidis, G.E., and Gionis, V. (2013) Structural characterization of reduced-charge montmorillonites. Evidence based on FTIR spectroscopy, thermal behavior, and layer-charge systematics. Clays and Clay Minerals, 61, 83–97.

    Article  Google Scholar 

  • Sovago, M., Kramer Campen, R.K., Bakker H.J., and Bonn, M. (2009) Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation. Chemical Physics Letters, 470, 7–12.

    Article  Google Scholar 

  • Sposito, G., Prost, R., and Gaultier, J.P. (1983) Infrared spectroscopic study of adsorbed water on reduced-charge Na-Li-montmorillonites. Clays and Clay Minerals, 31, 9–16.

    Article  Google Scholar 

  • Środoń, J., Zeelmaekers, E., and Derkowski, A. (2009) The charge of component layers of illite-smectite in bentonites and the nature of end-member illite. Clays and Clay Minerals, 57, 649–671.

    Article  Google Scholar 

  • Stevens, R.E. (1946) A system for calculating analyses of micas and related minerals to end members. U.S. Geological Survey Bulletin, 950, 101–119.

    Google Scholar 

  • Suquet, H., Prost, R., and Pezerat, H. (1977) Water adsorbed by calcium saponite — IR spectroscopy. Clay Minerals, 12, 113–126.

    Article  Google Scholar 

  • Tertre, E., Delville, A., Pret, D., Hubert, F., and Ferrage, E. (2015) Cation diffusion in the interlayer space of swelling clay minerals — A combined macroscopic and microscopic study. Geochimica et Cosmochimica Acta, 149, 251–267.

    Article  Google Scholar 

  • Tian, C.S. and Shen, Y.R. (2009) Sum-frequency vibrational spectroscopic studies of water/vapor interfaces. Chemical Physics Letters, 470, 1–6.

    Article  Google Scholar 

  • Wolters, F., Lagaly, G., Kahr, G., Nueesch, R., and Emmerich, K. (2009) A comprehensive characterization of dioctahedral smectites. Clays and Clay Minerals, 57, 115–133.

    Article  Google Scholar 

  • Xu, W.Z., Johnston, C.T., Parker, P., and Agnew, S.F. (2000) Infrared study of water sorption on Na-, Li-, Ca-, and Mgexchanged (SWy-1 and SAz-1) montmorillonite. Clays and Clay Minerals, 48, 120–131.

    Article  Google Scholar 

  • Zviagina, B.B., McCarty, D., Środoń, J., and Drits V.A. (2004) Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals, 52, 399–410.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arkadiusz Derkowski or Georgios D. Chryssikos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuligiewicz, A., Derkowski, A., Emmerich, K. et al. Measuring the Layer Charge of Dioctahedral Smectite by O—D Vibrational Spectroscopy. Clays Clay Miner. 63, 443–456 (2015). https://doi.org/10.1346/CCMN.2015.0630603

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2015.0630603

Key Words

Navigation