Skip to main content
Log in

Interaction of Corroding Iron with Bentonite in the ABM1 Experiment at Äspö, Sweden: A Microscopic Approach

  • Published:
Clays and Clay Minerals

Abstract

Bentonite and iron metals are common materials proposed for use in deep-seated geological repositories for radioactive waste. The inevitable corrosion of iron leads to interaction processes with the clay which may affect the sealing properties of the bentonite backfill. The objective of the present study was to improve our understanding of this process by studying the interface between iron and compacted bentonite in a geological repository-type setting. Samples of MX-80 bentonite samples which had been exposed to an iron source and elevated temperatures (up to 115°C) for 2.5 y in an in situ experiment (termed ABM1) at the Äspö Hard Rock Laboratory, Sweden, were investigated by microscopic means, including scanning electron microscopy, μ-Raman spectroscopy, spatially resolved X-ray diffraction, and X-ray fluorescence.

The corrosion process led to the formation of a ~100 mm thick corrosion layer containing siderite, magnetite, some goethite, and lepidocrocite mixed with the montmorillonitic clay. Most of the corroded Fe occurred within a 10 mm-thick clay layer adjacent to the corrosion layer. An average corrosion depth of the steel of 22–35 μm and an average Fe2+ diffusivity of 1–2 × 10−13 m2/s were estimated based on the properties of the Fe-enriched clay layer. In that layer, the corrosion-derived Fe occurred predominantly in the clay matrix. The nature of this Fe could not be identified. No indications of clay transformation or newly formed clay phases were found. A slight enrichment of Mg close to the Fe—clay contact was observed. The formation of anhydrite and gypsum, and the dissolution of some SiO2 resulting from the temperature gradient in the in situ test, were also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradbury, M., Berner, U., Curti, E., Hummel, W., Kosakowski, G., and Thoenen, T. (2014) The long term geochemical evolution of the nearfield of the HLW repository. NAGRA Technical Report NTB 12-01, Wettingen, Switzerland. https://doi.org/www.nagra.ch/en/downloadcentre.htm

  • Carlson, L., Karnland, O., Oversby, V.M., Rance, A.P., Smart, N.R., Snellman, M., Vähänen, M., and Werme, L.O. (2007) Experimental studies of the interactions between anaerobically corroding iron and bentonite. Physics and Chemistry of the Earth, 32, 334–345.

    Article  Google Scholar 

  • Carrado, K.A. and Komadel, P. (2009) Acid activation of bentonites and polymer—clay nanocomposites. Elements, 5, 111–116.

    Article  Google Scholar 

  • Charpentier, D., Devineau, K., Mosser Ruck, R., Cathelineau, M., and Villieras, F. (2006) Bentonite—iron interactions under alkaline condition: An experimental approach. Applied Clay Science, 32, 1–13.

    Article  Google Scholar 

  • Christidis, G.E. and Huff, W.D. (2009) Geological aspects and genesis of bentonites. Elements, 5, 93–98.

    Article  Google Scholar 

  • De Combarieu, G., Schlegel, M.L., Neff, D., Foy, E., Vantelon, D., Barboux, P., and Gin, S. (2011) Glass-iron-clay interactions in a radioactive waste geological disposal: An integrated laboratory-scale experiment. Applied Geochemistry, 26, 65–79.

    Article  Google Scholar 

  • Didier, M., Leone, L., Greneche, J.-M., Giffaut, E., and Charlet, L. (2012) Adsorption of hydrogen gas and redox processes in clays. Environmental Science and Technology, 46, 3574–3579.

    Article  Google Scholar 

  • Dohrmann, R., Olsson, S., Kaufhold, S., and Sellin, P. (2013) Mineralogical investigations of the first package of the alternative buffer material test. II. Exchangeable cation population rearrangement. Clay Minerals, 48, 215–233.

    Article  Google Scholar 

  • Eisenhour, D.D. and Brown, R.K. (2009) Bentonite and its impact on modern life. Elements, 5, 83–88.

    Article  Google Scholar 

  • Eng, A., Nilsson, U., and Svensson, D. (2007) Äspö Hard Rock Laboratory. Alternative Buffer Material. Installation report. SKB International Progress Report IPR-07-15, Stockholm, Sweden. https://doi.org/www.skb.com/publication/1633130/

  • Fernández, A.M. and Villar, M.V. (2010) Geochemical behaviour of a bentonite barrier in the laboratory after up to 8 years of heating and hydration. Applied Geochemistry, 25, 809–824.

    Article  Google Scholar 

  • Foct, F. and Gras, J.-M. (2003) Semi-empirical model for carbon steel corrosion in long term geological nuclear waste disposal. Pp. 92–102 in: Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems (D. Ferron and D.D McDonald, editors). European Federation of Corrosion. ISBN 1902653874.

  • Gates, W.P., Bouazza, A., and Churchman, G.J. (2009) Bentonite clay keeps pollutants at bay. Elements, 5, 105–110.

    Article  Google Scholar 

  • Gaudin, A., Gaboreau, S., Tinseau, E., Bartier, D., Petit, S., Grauby, O., Foct, F., and Beaufort, D. (2009) Mineralogical reactions in the Tournemire argillite after in situ interaction with steels. Applied Clay Science, 43, 196–207.

    Article  Google Scholar 

  • Guillaume, D., Neaman, A., Cathelineau, M., Mosser-Ruck, R., Pfeiffert, C., Abdeloula, M., Dubessy, J., Villéras, F., Baronnet, A., and Michau, N. (2003) Experimental synthesis of chlorite from smectite at 300°C in the presence of metallic Fe. Clay Minerals, 38, 281–302.

    Article  Google Scholar 

  • Guillaume, D., Neaman, A., Cathelineau, M., Mosser-Ruck, R., Peiffert, C., Abdelmoula, M., Dubessy, J., Villiéras, F., and Michau, N. (2004) Experimental study of the transformation of smectite at 80 and 300°C in the presence of Fe oxides. Clay Minerals, 39, 17–34.

    Article  Google Scholar 

  • Güven, N. (2009) Bentonites — clays for molecular engineering. Elements, 5, 89–92.

    Article  Google Scholar 

  • Jodin-Caumon, M.-C., Mosser-Ruck, R., Rousset, D., Randi, A., Cathelineau, M., and Michau, N. (2010) Effect of a thermal gradient on iron-clay interactions. Clays and Clay Minerals, 58, 667–681.

    Article  Google Scholar 

  • Jodin-Caumon, M.-C., Mosser-Ruck, R., Randi, A., Pierron, O., Cathelineau, M., and Michau, N. (2012) Mineralogical evolution of a claystone after reaction with iron under thermal gradient. Clays and Clay Minerals, 60, 443–455.

    Article  Google Scholar 

  • Johnson, L., Marschall, P., Wersin, P., and Gribi, P. (2008) HMCBG processes related to the steel components in the KBS-3H disposal concept. SKB Report R-08-25, SKB, Stockholm, Sweden. 127 pp. https://doi.org/www.skb.com/publication/1857594/

  • Karnland, O., Olsson, S., and Nilsson, U. (2006) Mineralogy and sealing properties of various bentonites and smectiterich clay materials. SKB Technical Report TR-06-30, Stockholm, Sweden. https://doi.org/www.skb.com/publication/1419144/

  • Karnland, O., Nilsson, U., Weber, H., and Wersin, P. (2008) Sealing ability of Wyoming bentonite pellets foreseen as buffer material — laboratory tests. Physics and Chemistry of the Earth, 33, S472–S475.

    Article  Google Scholar 

  • Karnland, O., Olsson, S., Dueck, A., Birgersson, M., Nilsson, U., and Hernan-Hakansson, T. (2009) Long term test of buffer material at the Äspö Hard Rock Laboratory, LOT project. Final report on the A2 test parcel. SKB Technical Report TR-09-29, Stockholm, Sweden. https://doi.org/www.skb.com/publication/1961944/

  • Kaufhold, S., Dohrmann, R., Sanden, T., Sellin, P., and Svensson, D. (2013) Mineralogical investigations of the first package of the alternative buffer material test. I. Alteration of bentonites. Clay Minerals, 48, 199–213.

    Article  Google Scholar 

  • King, F. (2008) Corrosion of carbon steel under anaerobic conditions in a repository for SF and HLW in Opalinus Clay. NAGRA Technical Report NTB 08-12, Wettingen, Switzerland. https://doi.org/www.nagra.ch/en/downloadcentre.htm

  • Kumpulainen, S., Carlsson, T., Muurinen, A., Kiviranta, L., Svensson, D., Sasamoto, H.,Yui, M., Wersin, P., and Rosch, D. (2010) Long-term alteration of bentonite in the presence of metallic iron. Posiva Working Report 2010-71, Olkiluoto, Finland and SKB Report R-10-52, Stockholm, Sweden. https://doi.org/www.skb.com/publication/2255832/

  • Lanson, B., Lantenois, S., Van Aken, P.A., Bauer, A., and Plançon, A. (2012) Experimental investigation of smectite interaction with metal iron at 80°C: Structural characterization of newly formed Fe-rich phyllosilicates. American Mineralogist, 97, 864–871.

    Article  Google Scholar 

  • Lantenois, S., Lanson, B., Mulller, F., Bauer, A., Jullien, M., and Plançon, A. (2005) Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization. Clays and Clay Minerals, 53, 597–612.

    Article  Google Scholar 

  • Martin, F.A., Bataillon, C., and Schlegel, M.B. (2008) Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment. Journal of Nuclear Materials, 379, 80–90.

    Article  Google Scholar 

  • Marty, N.C.M., Fritz, B., Clément, A., and Michau, N. (2010) Modelling the long term alteration of the bentonite barrier in an underground radioactive waste repository. Applied Clay Science, 47, 82–90.

    Article  Google Scholar 

  • Meier, L.P. and Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386–388.

    Article  Google Scholar 

  • Molera, M. and Eriksen, T.E. (1998) Cation diffusion in compacted bentonite. Mineralogical Magazine, 62A, 1007–1008.

    Article  Google Scholar 

  • Mosser-Ruck, R., Cathelineau, M., Guillaume, D., Charpentier, D., Rousset, D., Barres, O., and Michau, N. (2010) Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite. Clays and Clay Minerals, 58, 280–291.

    Article  Google Scholar 

  • NAGRA (2002) Project Opalinus Clay: Safety report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis). NAGRA Technical Report NTB 02-05, Wettingen, Switzerland. https://doi.org/www.nagra.ch/en/downloadcentre.htm

  • NAGRA (2009) Performance of bentonite as buffer and sealing material: Status of R and D programme. NAGRA Arbeitsbericht NAB 09-12, Wettingen, Switzerland. https://doi.org/www.nagra.ch/en/downloadcentre.htm

  • NAGRA (2011) Alternative Buffer Material — Status report. NAGRA Arbeitsbericht NAB 11-19, NAGRA, Wettingen, Switzerland. https://doi.org/www.nagra.ch/en/downloadcentre.htm

  • Osackýa, M., Šucha, V., Czímerová, A., and Madejová, J. (2010) Reaction of smectites with iron in a nitrogen atmosphere at 75°C. Applied Clay Science, 50, 237–244.

    Article  Google Scholar 

  • Papillon, F., Jullien, M., and Bataillon, C. (2001) Carbon steel behaviour in compacted clay: two long-term tests for corrosion prediction. Pp. 439–454 in: Prediction of Long Term Corrosion, Behaviour in Nuclear Waste Systems. (D. Feron and D.D. MacDonald, editors). European Federation of Corrosion Publications.

  • Perronnet, M., Jullien, M., Villieras, F., Raynal, J., Bonnin, D., and Bruno, G. (2008) Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80°C. Applied Clay Science, 38, 187–202.

    Article  Google Scholar 

  • POSIVA (2013) Safety case for the disposal of spent nuclear fuel at Olkiluoto. Report Posiva 2012–14, Olkiluoto, Finland. https://doi.org/www.posiva.fi/en/databank/posiva_reports#.VM4v0yxARrQ

  • Schlegel, M.L., Bataillon, C., Blanc, C., Prêt, D., and Foy, E. (2010) Anodic activation of iron corrosion in clay media under water-saturated conditions at 90 degrees C: characterization of the corrosion interface. Environmental Science & Technology, 44, 1503–1508.

    Article  Google Scholar 

  • Schlegel, M.L., Bataillon, C., Brucker, F., Blanc, C., Pêt, D., Foy, E., and Chorro, M. (2014) Corrosion of metal iron in contact with anoxic clay at 90°C: Characterization of the corrosion products after two years of interaction. Applied Geochemistry, 51, 1–14.

    Article  Google Scholar 

  • SKB (2011) Long-term safety for the final repository for spent nuclear fuel at Forsmark. SKB Technical Report TR-11-01, Stockholm, Sweden. https://doi.org/www.skb.com/publication/2345580/

  • Svensson, D., Dueck, A., Nilsson, U., Olsson, S., Sandén, T., Lydmark, S., Jägerwall, S., Pedersen, K., and Hansen, S. (2011) Alternative buffer material. Status of the ongoing laboratory investigation of reference materials and test package 1. SKB Technical Report TR-11-06, Stockholm, Sweden. https://doi.org/www.skb.com/publication/2442994/

  • Svensson, D., and Hansen, S. (2013) Iron redox chemistry in two iron-bentonite field experiments at Äspö Hard Rock Laboratory, Sweden — studied by Fe K XANES and XRD. Clays and Clay Minerals, 61, 566–579.

    Article  Google Scholar 

  • Tournassat, C. (2003) Cations—clays interactions: the Fe(II) case. Application to the problem of the French deep nuclear repository field concept. PhD thesis, University of Grenoble, France, 199 pp.

  • Wersin, P. and Birgersson, M. (2014) Reactive transport modelling of iron-bentonite interaction within the KBS-3H disposal concept: the Olkiluoto site as a case study. Pp. 237–250 in: Clays in Natural and Engineered Barriers for Radioactive Waste Confinement (S. Norris, J. Bruno, M. Cathelineau, P. Delage, C. Fairhurst, E.C. Gaucher, Höhn, E.H., A. Kalinichev, P. Lalieux, and P. Sellin, editors). Special Publications, 400, Geological Society, London.

    Google Scholar 

  • Wersin, P., Spahiu, K., and Bruno, J. (1994) Time evolution of dissolved oxygen and redox conditions in a HLW repository. SKB Technical Report TR 94-02, Stockholm, Sweden. https://doi.org/www.skb.com/publication/9933/

  • Wersin, P., Johnson, L., and Schwyn, B. (2004) Assessment of redox conditions in the near field of nuclear waste repositories: Application to the Swiss high-level and intermediate level waste disposal concept. MRS symposium proceedings, 807 (V.M. Oversby and L.O. Werme, editors). Materia l s Research Society (MRS), Pittsburgh, Pennsylvania, pp. 539–544. (Scientific basis for nuclear waste management XXVII: Symposium held 15–19 June, 2003, Kalmar, Sweden.)

  • Wersin, P., Birgersson, M., Olsson, S., Karnland, O., and Snellman, M. (2007) Impact of corrosion-derived iron on the bentonite buffer within the KBS-3H disposal concept — the Olkiluoto site as case study. Posiva Report 2007-11, Olkilouto, Finland. https://doi.org/www.posiva.fi/en/databank/posiva_reports#.VM4v0yxARrQ

  • Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.

    Article  Google Scholar 

  • Williams, L.B., Haydel, S.E., and Ferrell, R.E. Jr. (2009) Bentonite, bandaids, and Borborygmi. Elements, 5, 99–104.

    Article  Google Scholar 

  • Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K.V., Savage, D., and Shibata, M. (2006) The effect of iron on montmorillonite stability: (II) Experimental investigation. Geochimica et Cosmochimica Acta, 70, 323–336.

    Article  Google Scholar 

  • Wollenberg, R. and Schröder, H. (2006) Herstellung und Charakterisierung von Bentonitsystemen für den Einsatz als Versiegelungsmaterial (Fabrication and characterization of bentonite systems for the use as sealing material). NAGRA Arbeitsbericht NAB 06-20, Wettingen, Switzerland.

  • Xia, X., Idemitsu, K., Arima, T., Inagaki, Y., Ishidera, T., Kurosawa, S., Iijima, K., and Sato, H. (2005) Corrosion of carbon steel in compacted bentonite and its effect on neptunium diffusion under reducing condition. Applied Clay Science, 28, 89–100.

    Article  Google Scholar 

  • Yu, J.-W. and Neretnieks, I. (1997) Diffusion and sorption properties of radionuclides in compacted bentonite. SKB Technical Report TR 97-12, Stockholm, Sweden. https://doi.org/www.skb.com/publication/13606/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Wersin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wersin, P., Jenni, A. & Mäder, U.K. Interaction of Corroding Iron with Bentonite in the ABM1 Experiment at Äspö, Sweden: A Microscopic Approach. Clays Clay Miner. 63, 51–68 (2015). https://doi.org/10.1346/CCMN.2015.0630105

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2015.0630105

Key Words

Navigation