Skip to main content

Advertisement

Log in

Prognostic Impact of Stromal Profiles Educated by Gastric Cancer

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer-associated fibroblasts exhibit diversity and have several subtypes. The underlying relationship between the diversity of cancer-associated fibroblasts and their effect on gastric cancer progression remains unclear. In this study, mesenchymal stem cells were differentiated into cancer-associated fibroblasts with gastric cancer cell lines; clinical specimens were used to further investigate the impact of cancer-associated fibroblast diversity on cancer progression.

Methods

Nine gastric cancer cell lines (NUGC3, NUGC4, MKN7, MKN45, MKN74, FU97, OCUM1, NCI-N87, and KATOIII) were used to induce mesenchymal stem cell differentiation into cancer-associated fibroblasts. The cancer-associated fibroblasts were classified based on ACTA2 and PDPN expression. Cell function analysis was used to examine the impact of cancer-associated fibroblast subtypes on cancer cell phenotype. Tissue samples from 97gastric patients who underwent gastrectomy were used to examine the clinical significance of each subtype classified according to cancer-associated fibroblast expression.

Results

Co-culture of mesenchymal stem cells with nine gastric cancer cell lines revealed different subtypes of ACTA2 and PDPN expression in differentiated cancer-associated fibroblasts. Cancer-associated fibroblast subtypes with high ACTA2 plus PDPN expression levels significantly increased gastric cancer cell migration, invasion, and proliferation. The cancer-associated fibroblast subtype with ACTA2 plus PDPN expression was an independent prognostic factor along with lymph node metastasis for patients who had gastric cancer and were undergoing surgery.

Conclusions

Cancer-associated fibroblasts are educated by gastric cancer cells during the development of cancer-associated fibroblast diversity. Differentiated cancer-associated fibroblasts with distinct expression patterns could affect gastric cancer progression and enable prognostic stratification for gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hyuna S, Jacques F, Rebecca LS, Mathieu L, Isabelle S, Ahmedin J, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  2. Wang H, Wu X, Chen Y. Stromal-immune score-based gene signature: a prognosis stratification tool in gastric cancer. Front Oncol. 2019;9:1212.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res. 2019;7:737–50.

    Article  CAS  PubMed  Google Scholar 

  4. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:45.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Paluskievicz CM, Cao X, Abdi R, Zheng P, Liu Y, Bromberg JS. T regulatory cells and priming the suppressive tumor microenvironment. Front Immunol. 2019;10:2453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiang X, Niu YR, Wang ZH, Ye LL, Peng WB, Zhou Q. Cancer-associated fibroblasts: vital suppressors of the immune response in the tumor microenvironment. Cytokine Growth Factor Rev. 2022;67:35–48.

    Article  CAS  PubMed  Google Scholar 

  9. Maeda M, Takeshima H, Iida N, Hattori N, Yamashita S, Moro H, et al. Cancer cell niche factors secreted from cancer-associated fibroblast by loss of H3K27me3. Gut. 2020;69:243–51.

    Article  CAS  PubMed  Google Scholar 

  10. Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers. 2015;7:2443–58.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kharaishvili G, Simkova D, Bouchalova K, Gachechiladze M, Narsia N, Bouchal J. The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int. 2014;14:41.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9:1102–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharon Y, Alon L, Glanz S, Servais C, Erez N. Isolation of normal and cancer-associated fibroblasts from fresh tissues by fluorescence activated cell sorting (FACS). J Vis Exp. 2013;14:e4425.

    Google Scholar 

  14. Luo H, Xia X, Huang LB, An H, Cao M, Kim GD, et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat Commun. 2022;13:6619.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishihara S, Inman DR, Li WJ, Ponik SM, Keely PJ. Mechano-signal transduction in mesenchymal stem cells induces prosaposin secretion to drive the proliferation of breast cancer cells. Cancer Res. 2017;77:6179–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peng Y, Li Z, Li Z. GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem Biophys Res Commun. 2013;440:558–63.

    Article  CAS  PubMed  Google Scholar 

  17. Weber CE, Kothari AN, Wai PY, Li NY, Driver J, Zapf MA, et al. Osteopontin mediates an MZF1-TGF-beta1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer. Oncogene. 2015;34:4821–33.

    Article  CAS  PubMed  Google Scholar 

  18. Miyazaki Y, Oda T, Mori N, Kida YS. Adipose-derived mesenchymal stem cells differentiate into pancreatic cancer-associated fibroblasts in vitro. FEBS Open Bio. 2020;10:2268–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan HX, Xiao ZG, Huang T, Fang ZX, Liu Y, Huang ZC. CXCR4/TGF-β1 mediated self-differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and promoted colorectal carcinoma development. Cancer Biol Ther. 2020;21:248–57.

    Article  PubMed  Google Scholar 

  20. Sobin L, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. New York: Wiley-Blackwell; 2009.

    Google Scholar 

  21. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8:761–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uchihara T, Miyake K, Yonemura A, Komohara Y, Itoyama R, Koiwa M, et al. Extracellular vesicles from cancer-associated fibroblasts containing annexin A6 induces FAK-YAP activation by stabilizing β1 integrin, enhancing drug resistance. Cancer Res. 2020;80:3222–35.

    Article  CAS  PubMed  Google Scholar 

  23. Hu J, Li X, Yang L, Li H. Hypoxia, a key factor in the immune microenvironment. Biomed Pharmacother. 2022;151:113068.

    Article  CAS  PubMed  Google Scholar 

  24. Kinoshita H, Yashiro M, Fukuoka T, Hasegawa T, Morisaki T, Kasashima H, et al. Diffuse-type gastric cancer cells switch their driver pathways from FGFR2 signaling to SDF1/CXCR4 axis in hypoxic tumor microenvironments. Carcinogenesis. 2015;36:1511–20.

    CAS  PubMed  Google Scholar 

  25. Naito Y, Yamamoto Y, Sakamoto N, Shimomura I, Kogure A, Kumazaki M, et al. Cancer extracellular vesicles contribute to stromal heterogeneity by inducing chemokines in cancer-associated fibroblasts. Oncogene. 2019;38:5566–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bremnes RM, Dønnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol. 2011;6:209–17.

    Article  PubMed  Google Scholar 

  28. Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth – bystanders turning into key players. Curr Opin Genet Dev. 2009;19:67–73.

    Article  PubMed  Google Scholar 

  29. Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5:1640–6.

    Article  CAS  PubMed  Google Scholar 

  30. Schoppmann SF, Jesch B, Riegler MF, Maroske F, Schwameis K, Jomrich G, et al. Podoplanin expressing cancer associated fibroblasts are associated with unfavourable prognosis in adenocarcinoma of the esophagus. Clin Exp Metastasis. 2013;30:441–6.

    Article  CAS  PubMed  Google Scholar 

  31. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol. 1999;277:1-C9.

    Article  Google Scholar 

  32. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Physiol. 1999;277:C183-201.

    Article  CAS  PubMed  Google Scholar 

  33. Tsujino T, Seshimo I, Yamamoto H, Ngan CY, Ezumi K, Takemasa I, et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res. 2007;13:2082–90.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng Y, Wang K, Ma W, Zhang X, Song Y, Wang J, et al. Cancer-associated fibroblasts are associated with poor prognosis in esophageal squamous cell carcinoma after surgery. Int J Clin Exp Med. 2015;8:1896–903.

    PubMed  PubMed Central  Google Scholar 

  35. Maruyama S, Furuya S, Shiraishi K, Shimizu H, Akaike H, Hosomura N, et al. Podoplanin expression as a prognostic factor in gastric cancer. Anticancer Res. 2018;38:2717–22.

    CAS  PubMed  Google Scholar 

  36. Scholl FG, Gamallo C, Vilaró S, Quintanilla M. Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes. J Cell Sci. 1999;112:4601–13.

    Article  CAS  PubMed  Google Scholar 

  37. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor invasion in the absence of epithelial mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell. 2006;9:261–72.

    Article  CAS  PubMed  Google Scholar 

  38. Martín-Villar E, Megías D, Castel S, Yurrita MM, Vilaró S, Quintanilla M. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci. 2006;119:4541–53.

    Article  PubMed  Google Scholar 

  39. Kaneko MK, Kato Y, Kitano T, Osawa M. Conservation of a platelet activating domain of Aggrus/podoplanin as a platelet aggregation-inducing factor. Gene. 2006;378:52–7.

    Article  CAS  PubMed  Google Scholar 

  40. Kunita A, Kashima TG, Ohazama A, Grigoriadis AE, Fukayama M. Podoplanin is regulated by AP-1 and promotes platelet aggregation and cell migration in osteosarcoma. Am J Pathol. 2011;179:1041–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kitano H, Kageyama S, Hewitt SM, Hayashi R, Doki Y, Ozaki Y, et al. Podoplanin expression in cancerous stroma induces lymphangiogenesis and predicts lymphatic spread and patient survival. Arch Pathol Lab. 2010;134:1520–7.

    Article  CAS  Google Scholar 

  42. Suzuki S, Ishii G, Matsuwaki R, Neri S, Hashimoto H, Yamauchi C, et al. Ezrin-expressing lung adenocarcinoma cells and podoplanin-positive fibroblasts form a malignant microenvironment. J Cancer Res Clin Oncol. 2015;141:475–84.

    Article  CAS  PubMed  Google Scholar 

  43. Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer. 2020;146:895–905.

    Article  CAS  PubMed  Google Scholar 

  44. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was partially supported by JSPS KAKENHI Grant Number 21K16442.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the final manuscript.

Corresponding author

Correspondence to Katsutoshi Shoda MD, PhD.

Ethics declarations

Disclosures

None of the authors have any conflicts of interest to disclose.

Ethical Approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. All the patients provided written informed consent for surgery and the use of their clinical data, as required by the Institutional Review Board of the Yamanashi University (approved number 2567).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, K., Shoda, K., Takiguchi, K. et al. Prognostic Impact of Stromal Profiles Educated by Gastric Cancer. Ann Surg Oncol 31, 2309–2318 (2024). https://doi.org/10.1245/s10434-023-14522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-023-14522-z

Keywords

Navigation