Skip to main content

Advertisement

Log in

Breast Cancer-Related Lymphedema (BCRL) and Bioimpedance Spectroscopy: Long-Term Follow-Up, Surveillance Recommendations, and Multidisciplinary Risk Factors

  • Breast Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Early detection and intervention for breast cancer-related lymphedema (BCRL) significantly decreases progression to persistent BCRL (pBCRL). We aimed to provide long-term follow-up on our early detection with bioimpedance spectroscopy (BIS) and early home intervention demonstrating reduced pBCRL to guide surveillance recommendations.

Patients and Methods

In total, 148 female patients with breast cancer who had axillary lymph node dissection (ALND) from November 2014 to December 2017 were analyzed. Baseline BIS measurements and postoperative follow-up occurred every 3 months for 1 year, biannual for 1 year, and then annually. An elevated BIS triggered evaluation and initiation of at-home interventions with reassessment for resolution versus persistent BCRL (pBCRL). High-risk factors and timing were analyzed.

Results

Mean follow-up was 55 months, and 65 (44%) patients had an abnormal BIS. Of these, 54 (82%) resolved with home intervention. The overall pBCRL rate was 8%. Average time to first abnormal BIS was 11.7 months. None of the stage 0 patients (0/34) and only 5/25 (20%) of stage 1 patients had pBCRL. All of stage 2 and stage 3 patients (7/7) had pBCRL. pBCRL correlated with number of positive nodes, percentage of positive nodes, stage of lymphedema at diagnosis, and recurring abnormal BIS measurements (p < 0.05).

Conclusions

We have shown that patients undergoing ALND with early BCRL identified by BIS who performed home interventions had an 8% pBCRL rate. Patients at high risk for pBCRL should have routine surveillance starting at 9 months postoperatively to identify an opportunity for early intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  2. Zhang X, Oliveri JM, Paskett ED. Features, Predictors, and treatment of breast cancer-related lymphedema. Curr Breast Cancer Rep. 2020;12(4):244–54. https://doi.org/10.1007/s12609-020-00381-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McLaughlin SA, Staley AC, Vicini F, et al. Considerations for clinicians in the diagnosis, prevention, and treatment of breast cancer-related lymphedema: recommendations from a multidisciplinary expert ASBrS panel. Ann Surg Oncol. 2017;24(10):2818–26. https://doi.org/10.1245/s10434-017-5982-4.

    Article  PubMed  Google Scholar 

  4. Gärtner R, Jensen MB, Kronborg L, Ewertz M, Kehlet H, Kroman N. Self-reported arm-lymphedema and functional impairment after breast cancer treatment–a nationwide study of prevalence and associated factors. Breast Edinb Scotl. 2010;19(6):506–15. https://doi.org/10.1016/j.breast.2010.05.015.

    Article  Google Scholar 

  5. Lawenda BD, Mondry TE, Johnstone PAS. Lymphedema: a primer on the identification and management of a chronic condition in oncologic treatment. CA Cancer J Clin. 2009;59(1):8–24. https://doi.org/10.3322/caac.20001.

    Article  PubMed  Google Scholar 

  6. De Vrieze T, Gebruers N, Nevelsteen I, et al. Breast cancer-related lymphedema and its treatment: how big is the financial impact? Support Care Cancer. 2021;29(7):3801–13. https://doi.org/10.1007/s00520-020-05890-3.

    Article  PubMed  Google Scholar 

  7. Document C. The diagnosis and treatment of peripheral lymphedema: 2020 consensus document of the international society of lymphology. Lymphology. 2020;53(1):1–2. https://doi.org/10.2458/lymph.4649.

    Article  Google Scholar 

  8. Rockson SG. Lymphedema after breast cancer treatment. N Engl J Med. 2018;379(20):1937–44. https://doi.org/10.1056/NEJMcp1803290.

    Article  PubMed  Google Scholar 

  9. Shah C, Vicini FA, Arthur D. Bioimpedance spectroscopy for breast cancer related lymphedema assessment: clinical practice guidelines. Breast J. 2016;22(6):645–50. https://doi.org/10.1111/tbj.12647.

    Article  PubMed  Google Scholar 

  10. Shah C, Zambelli-Weiner A, Delgado N, Sier A, Bauserman R, Nelms J. The impact of monitoring techniques on progression to chronic breast cancer-related lymphedema: a meta-analysis comparing bioimpedance spectroscopy versus circumferential measurements. Breast Cancer Res Treat. 2021;185(3):709–40. https://doi.org/10.1007/s10549-020-05988-6.

    Article  PubMed  Google Scholar 

  11. Kaufman DI, Shah C, Vicini FA, Rizzi M. Utilization of bioimpedance spectroscopy in the prevention of chronic breast cancer-related lymphedema. Breast Cancer Res Treat. 2017;166(3):809–15. https://doi.org/10.1007/s10549-017-4451-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Whitworth PW, Cooper A. Reducing chronic breast cancer-related lymphedema utilizing a program of prospective surveillance with bioimpedance spectroscopy. Breast J. 2018;24(1):62–5. https://doi.org/10.1111/tbj.12939.

    Article  CAS  PubMed  Google Scholar 

  13. Yang EJ, Ahn S, Kim EK, et al. Use of a prospective surveillance model to prevent breast cancer treatment-related lymphedema: a single-center experience. Breast Cancer Res Treat. 2016;160(2):269–76. https://doi.org/10.1007/s10549-016-3993-7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gillespie TC, Sayegh HE, Brunelle CL, Daniell KM, Taghian AG. Breast cancer-related lymphedema: risk factors, precautionary measures, and treatments. Gland Surg. 2018;7(4):379–403. https://doi.org/10.21037/gs.2017.11.04.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Swaroop MN, Ferguson CM, Horick NK, et al. Impact of adjuvant taxane-based chemotherapy on development of breast cancer-related lymphedema: results from a large prospective cohort. Breast Cancer Res Treat. 2015;151(2):393–403. https://doi.org/10.1007/s10549-015-3408-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koelmeyer LA, Gaitatzis K, Dietrich MS, et al. Risk factors for breast cancer-related lymphedema in patients undergoing 3 years of prospective surveillance with intervention. Cancer. 2022;128(18):3408–15. https://doi.org/10.1002/cncr.34377.

    Article  CAS  PubMed  Google Scholar 

  17. Kim JS, Kim JH, Chang JH, Kim DW, Shin KH. Prediction of breast cancer-related lymphedema risk after postoperative radiotherapy via multivariable logistic regression analysis. Front Oncol. 2022;12:1026043. https://doi.org/10.3389/fonc.2022.1026043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kassamani YW, Brunelle CL, Gillespie TC, et al. Diagnostic criteria for breast cancer-related lymphedema of the upper extremity: the need for universal agreement. Ann Surg Oncol. 2022;29(2):989–1002. https://doi.org/10.1245/s10434-021-10645-3.

    Article  PubMed  Google Scholar 

  19. Ridner SH, Dietrich MS, Boyages J, et al. A comparison of bioimpedance spectroscopy or tape measure triggered compression intervention in chronic breast cancer lymphedema prevention. Lymphat Res Biol. 2022;20(6):618–28. https://doi.org/10.1089/lrb.2021.0084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koelmeyer LA, Borotkanics RJ, Alcorso J, et al. Early surveillance is associated with less incidence and severity of breast cancer-related lymphedema compared with a traditional referral model of care. Cancer. 2019;125(6):854–62. https://doi.org/10.1002/cncr.31873.

    Article  PubMed  Google Scholar 

  21. Cornish BH, Chapman M, Hirst C, et al. Early diagnosis of lymphedema using multiple frequency bioimpedance. Lymphology. 2001;34(1):2–11.

    CAS  PubMed  Google Scholar 

  22. Ridner SH, Dietrich MS, Cowher MS, et al. A randomized trial evaluating bioimpedance spectroscopy versus tape measurement for the prevention of lymphedema following treatment for breast cancer: interim analysis. Ann Surg Oncol. 2019;26(10):3250–9. https://doi.org/10.1245/s10434-019-07344-5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Soran A, Ozmen T, McGuire KP, et al. The importance of detection of subclinical lymphedema for the prevention of breast cancer-related clinical lymphedema after axillary lymph node dissection; a prospective observational study. Lymphat Res Biol. 2014;12(4):289–94. https://doi.org/10.1089/lrb.2014.0035.

    Article  PubMed  Google Scholar 

  24. Whitworth P, Vicini F, Valente SA, et al. Reducing rates of chronic breast cancer–related lymphedema with screening and early intervention: an update of recent data. J Cancer Surviv. 2022. https://doi.org/10.1007/s11764-022-01242-8.

    Article  PubMed  Google Scholar 

  25. Havens LM, Brunelle CL, Gillespie TC, et al. Use of technology to facilitate a prospective surveillance program for breast cancer-related lymphedema at the Massachusetts General Hospital. mHealth. 2021;7:11. https://doi.org/10.21037/mhealth-19-218.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bucci LK, Brunelle CL, Bernstein MC, et al. Subclinical lymphedema after treatment for breast cancer: risk of progression and considerations for early intervention. Ann Surg Oncol. 2021;28(13):8624–33. https://doi.org/10.1245/s10434-021-10173-0.

    Article  PubMed  Google Scholar 

  27. Liu F, Li F, Fu MR, et al. Self-management strategies for risk reduction of subclinical and mild stage of breast cancer–related lymphedema: a longitudinal, quasi-experimental study. Cancer Nurs. 2021;44(6):E493. https://doi.org/10.1097/NCC.0000000000000919.

    Article  PubMed  Google Scholar 

  28. Kilgore LJ, Korentager SS, Hangge AN, et al. Reducing breast cancer-related lymphedema (BCRL) through prospective surveillance monitoring using bioimpedance spectroscopy (BIS) and patient directed self-interventions. Ann Surg Oncol. 2018;25(10):2948–52. https://doi.org/10.1245/s10434-018-6601-8.

    Article  PubMed  Google Scholar 

  29. Fu MR, Axelrod D, Guth AA, et al. Proactive approach to lymphedema risk reduction: a prospective study. Ann Surg Oncol. 2014;21(11):3481–9. https://doi.org/10.1245/s10434-014-3761-z.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ashikaga T, Krag DN, Land SR, et al. Morbidity results from the NSABP B-32 trial comparing sentinel lymph node dissection versus axillary dissection. J Surg Oncol. 2010;102(2):111–8. https://doi.org/10.1002/jso.21535.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wernicke AG, Goodman RL, Turner BC, et al. A 10-year follow-up of treatment outcomes in patients with early stage breast cancer and clinically negative axillary nodes treated with tangential breast irradiation following sentinel lymph node dissection or axillary clearance. Breast Cancer Res Treat. 2011;125(3):893–902. https://doi.org/10.1007/s10549-010-1167-6.

    Article  PubMed  Google Scholar 

  32. Montagna G, Zhang J, Sevilimedu V, et al. Risk factors and racial and ethnic disparities in patients with breast cancer–related lymphedema. JAMA Oncol. 2022;8(8):1195–200. https://doi.org/10.1001/jamaoncol.2022.1628.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyndsey J. Kilgore MD.

Ethics declarations

Disclosure

The authors have no disclosures to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeffers, E.J., Wagner, J.L., Korentager, S.S. et al. Breast Cancer-Related Lymphedema (BCRL) and Bioimpedance Spectroscopy: Long-Term Follow-Up, Surveillance Recommendations, and Multidisciplinary Risk Factors. Ann Surg Oncol 30, 6258–6265 (2023). https://doi.org/10.1245/s10434-023-13956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-023-13956-9

Navigation