Skip to main content
Log in

Clinical Significance of Signal Regulatory Protein Alpha (SIRPα) Expression in Hepatocellular Carcinoma

  • Hepatobiliary Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Signal regulatory protein alpha (SIRPα), expressed in the macrophage membrane, inhibits phagocytosis of tumor cells via CD47/SIRPα interaction, which acts as an immune checkpoint factor in cancers. This study aimed to clarify the clinical significance of SIRPα expression in hepatocellular carcinoma (HCC).

Methods

This study analyzed SIRPα expression using RNA sequencing data of 372 HCC tissues from The Cancer Genome Atlas (TCGA) and immunohistochemical staining of our 189 HCC patient cohort. The correlation between SIRPα expression and clinicopathologic factors, patient survival, and intratumor infiltration of immune cells was investigated.

Results

Overall survival (OS) was significantly poorer with high SIRPα expression than with low expression in both TCGA and our cohort. High SIRPα expression correlated with lower recurrence-free survival (RFS) in our cohort. High SIRPα expression was associated with higher rates of microvascular invasion and lower serum albumin levels and correlated with greater intratumor infiltration of CD68-positive macrophages and myeloid-derived suppressor cells (MDSCs). Multivariate analysis showed that SIRPα expression and high infiltration of CD8-positive T cells and MDSCs were predictive factors for both RFS and OS. Patients with high SIRPα expression and infiltration of CD8-positive T cells and MDSCs had significantly lower RFS and OS rates. In spatial transcriptomics sequencing, SIRPα expression was significantly correlated with CD163 expression.

Conclusions

High SIRPα expression in HCC indicates poor prognosis, possibly by inhibiting macrophage phagocytosis of tumor cells, promoting MDSC infiltration and inducing antitumor immunity. Treatment alternatives using SIRPα blockage should be considered in HCC as inhibiting macrophage antitumor immunity and MDSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Itoh S, Shirabe K, Taketomi A, et al. Zero mortality in more than 300 hepatic resections: validity of preoperative volumetric analysis. Surg Today. 2012;42:435–40.

    Article  PubMed  Google Scholar 

  2. Itoh S, Morita K, Ueda S, et al. Long-term results of hepatic resection combined with intraoperative local ablation therapy for patients with multinodular hepatocellular carcinomas. Ann Surg Oncol. 2009;16:3299–307.

    Article  PubMed  Google Scholar 

  3. Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7:10501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tomiyama T, Itoh S, Iseda N, et al. Myeloid-derived suppressor cell infiltration is associated with a poor prognosis in patients with hepatocellular carcinoma. Oncol Lett. 2022;23:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Itoh S, Yoshizumi T, Yugawa K, et al. Impact of immune response on outcomes in hepatocellular carcinoma: association with vascular formation. Hepatology. 2020;72:1987–99.

    Article  CAS  PubMed  Google Scholar 

  6. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.

    Article  CAS  PubMed  Google Scholar 

  7. Ding X, Wang J, Huang M, et al. Loss of microglial SIRPα promotes synaptic pruning in preclinical models of neurodegeneration. Nat Commun. 2021;12:2030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barclay AN, van den Berg TK. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Immunology. 2014;32:25–50.

    Article  CAS  Google Scholar 

  9. Murata Y, Kotani T, Ohnishi H, et al. The CD47-SIRP signalling system: its physiological roles and therapeutic application. J Biochem. 2014;155:335–44.

    Article  CAS  PubMed  Google Scholar 

  10. Koga N, Hu Q, Sakai A, et al. Clinical significance of signal regulatory protein alpha (SIRPα) expression in esophageal squamous cell carcinoma. Cancer Sci. 2021;112:3018–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 2001;11:130–5.

    Article  CAS  PubMed  Google Scholar 

  12. Kim H, Bang S, Jee S, et al. Clinicopathological significance of CD47 expression in hepatocellular carcinoma. J Clin Pathol. 2021;74:111–5.

    Article  CAS  PubMed  Google Scholar 

  13. Matozaki T, Murata Y, Okazawa H, et al. Functions and molecular mechanisms of the CD47–SIRPα signalling pathway. Trends Cell Biol. 2009;19:72–80.

    Article  CAS  PubMed  Google Scholar 

  14. Vaeteewoottacharn K, Kariya R, Pothipan P, et al. Attenuation of CD47-SIRPα signal in cholangiocarcinoma potentiates tumor-associated macrophage-mediated phagocytosis and suppresses intrahepatic metastasis. Transl Oncol. 2019;12:217–25.

    Article  PubMed  Google Scholar 

  15. Wang H, Sun Y, Zhou X, et al. CD47/SIRPα-blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. J Immunother Cancer. 2020;8:e000905.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin GHY, Chai V, Lee V, et al. TTI-621 (SIRPαFc), a CD47-blocking cancer immunotherapeutic, triggers phagocytosis of lymphoma cells by multiple polarized macrophage subsets. PLoS ONE. 2017;12:e0187262.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Itoh S, Shirabe K, Matsumoto Y, et al. Effect of body composition on outcomes after hepatic resection for hepatocellular carcinoma. Ann Surg Oncol. 2014;21:3063–8.

    Article  PubMed  Google Scholar 

  18. Itoh S, Yoshizumi T, Kitamura Y, et al. Impact of metabolic activity in hepatocellular carcinoma: association with immune status and vascular formation. Hepatol Commun. 2021. https://doi.org/10.1002/hep4.1715.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Iseda N, Itoh S, Yoshizumi T, et al. ARID1A deficiency is associated with high programmed death ligand 1 expression in hepatocellular carcinoma. Hepatol Commun. 2020. https://doi.org/10.1002/hep4.1659.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang H, Yan M, Li W, et al. SIRPα and PD1 expression on tumor-associated macrophage predict prognosis of intrahepatic cholangiocarcinoma. J Transl Med. 2022;20:140.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu Q, Wen W, Tang L, et al. Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity. Oncoimmunology. 2016;5:e1183850.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yanagita T, Murata Y, Tanaka D, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ring NG, Herndler-Brandstetter D, Weiskopf K, et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci. 2017;114:E10578–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Billerhart M, Schönhofer M, Schueffl H, et al. CD47-targeted cancer immunogene therapy: secreted SIRPα-Fc fusion protein eradicates tumors by macrophage and NK cell activation. Mol Ther Oncolytics. 2021;23:192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao XW, van Beek EM, Schornagel K, et al. CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proc Natl Acad Sci. 2011;108:18342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Fan J, Wang S, et al. Targeting CD47 and autophagy elicited enhanced antitumor effects in non-small cell lung cancer. Cancer Immunol Res. 2017;5:363–75.

    Article  CAS  PubMed  Google Scholar 

  27. Chao MP, Alizadeh AA, Tang C, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res. 2011;71:1374–84.

    Article  CAS  PubMed  Google Scholar 

  28. Kotecki N, Champiat S, Delord J-P, et al. 983P Phase I dose escalation study in patients (pts) with advanced solid tumours receiving first-in-class BI 765063, a selective signal-regulatory protein α (SIRPα) inhibitor, in combination with ezabenlimab (BI 754091), a programmed cell death protein 1 (PD-1) inhibitor. Ann Oncol. 2021;32:S841–2.

    Article  Google Scholar 

  29. Oronsky B, Carter C, Reid T, et al. Just eat it: a review of CD47 and SIRP-α antagonism. Semin Oncol. 2020;47:117–24.

    Article  CAS  PubMed  Google Scholar 

  30. Ding W, Tan Y, Qian Y, et al. Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: a meta-analysis. PLoS ONE. 2019;14:e0223971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bronte V, Murray PJ. Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer. Nat Med. 2015;21:117–9.

    Article  CAS  PubMed  Google Scholar 

  33. Tian X, Wu Y, Yang Y, et al. Long noncoding RNA LINC00662 promotes M2 macrophage polarization and hepatocellular carcinoma progression via activating Wnt/β-catenin signaling. Mol Oncol. 2020;14:462–83.

    Article  CAS  PubMed  Google Scholar 

  34. Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology. 2014;59:2034–42.

    Article  PubMed  Google Scholar 

  35. Kumar V, Patel S, Tcyganov E, et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alvey C, Discher DE. Engineering macrophages to eat cancer: from “marker of self” CD47 and phagocytosis to differentiation. J Leukocyte Biol. 2017;102:31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sikic BI, Lakhani N, Patnaik A, et al. First-in-human, first-in-class phase I trial of the Anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol. 2019;37:946–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu GT, Bu LL, Huang CF, et al. PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma. Oncotarget. 2015;6:42067–80. https://doi.org/10.18632/oncotarget.5955

Download references

Acknowledgment

This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. JP-19K09198) and the Research Grant of the Princess Takamatsu Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Itoh MD, PhD.

Ethics declarations

Disclosure

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomiyama, T., Itoh, S., Iseda, N. et al. Clinical Significance of Signal Regulatory Protein Alpha (SIRPα) Expression in Hepatocellular Carcinoma. Ann Surg Oncol 30, 3378–3389 (2023). https://doi.org/10.1245/s10434-022-13058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-13058-y

Navigation