Skip to main content

Advertisement

Log in

Robotic Adrenalectomy Using the da Vinci SP Robotic System: Technical Feasibility Comparison with Single-Port Access Using the da Vinci Multi-arm Robotic System

  • Endocrine Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Laparoscopic adrenalectomy is the gold standard for adrenal tumor; however, robotic adrenal surgery has gained interest recently. For minimally invasive surgeries, we first reported on robotic adrenalectomy using a single-port access performed using the da Vinci multi-arm robotic system (RA-SA) in 2011. Since its introduction in 2018, we first performed robotic adrenalectomy using the da Vinci SP robotic system in 2020.

Objective

We aimed to introduce the novel single-port robotic system (RA-SP) for adrenalectomy and evaluate its technical feasibility by comparing it with the surgical outcomes of patients who underwent robotic adrenalectomy using the RA-SA.

Methods

Eight patients who underwent robotic adrenalectomy using the RA-SP from February 2020 to June 2021 were compared with 11 patients who underwent RA-SA from 2011 to 2015 by a single surgeon.

Results

The two groups were similar in age, sex, body mass index, type of operation, and final pathologic diagnosis. Despite no significant differences, RA-SP resulted in moderately less mean operation time, estimated blood loss, and length of hospitalization.

Conclusions

The Da Vinci SP robotic system is a novel, safe, and feasible technique to improve the convenience of operation and cosmetic effect for adrenalectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gagner M, Lacroix A, Bolte E. Laparoscopic adrenalectomy in Cushing’s syndrome and pheochromocytoma. N Engl J Med. 1992;327(14):1033.

    Article  CAS  Google Scholar 

  2. Callender GG, Kennamer DL, Grubbs EG, Lee JE, Evans DB, Perrier ND. Posterior retroperitoneoscopic adrenalectomy. Adv Surg. 2009;43(1):147–57.

    Article  Google Scholar 

  3. Lee CR, Walz MK, Park S, et al. A comparative study of the transperitoneal and posterior retroperitoneal approaches for laparoscopic adrenalectomy for adrenal tumors. Ann Surg Oncol. 2012;19(8):2629–34.

    Article  Google Scholar 

  4. Kozłowski T, Choromanska B, Wojskowicz P, et al. Laparoscopic adrenalectomy: lateral transperitoneal versus posterior retroperitoneal approach–prospective randomized trial. Videosurg Other Miniinvasive Tech. 2019;14(2):160.

    Article  Google Scholar 

  5. Gavriilidis P, Camenzuli C, Paspala A, Di Marco AN, Palazzo FF. Posterior retroperitoneoscopic versus laparoscopic transperitoneal adrenalectomy: a systematic review by an updated meta-analysis. World J Surg. 2021;45(1):168–79.

    Article  Google Scholar 

  6. Hupe MC, Imkamp F, Merseburger AS. Minimally invasive approaches to adrenal tumors: an up-to-date summary including patient position and port placement of laparoscopic, retroperitoneoscopic, robot-assisted, and single-site adrenalectomy. Curr Opin Urol. 2017;27(1):56–61.

    Article  Google Scholar 

  7. Park JH, Kim SY, Lee C-R, et al. Robot-assisted posterior retroperitoneoscopic adrenalectomy using single-port access: technical feasibility and preliminary results. Ann Surg Oncol. 2013;20(8):2741–5.

    Article  Google Scholar 

  8. Arghami A, Dy BM, Bingener J, Osborn J, Richards ML. Single-port robotic-assisted adrenalectomy: feasibility, safety, and cost-effectiveness. JSLS. 2015;19(1):e2014.00218.

    Article  Google Scholar 

  9. Agcaoglu O, Karahan SN, Tufekci T, Tezelman S. Single-incision robotic adrenalectomy (SIRA): the future of adrenal surgery? Gland Surg. 2020;9(3):853.

    Article  Google Scholar 

  10. Brandao LF, Autorino R, Laydner H, et al. Robotic versus laparoscopic adrenalectomy: a systematic review and meta-analysis. Eur Urol. 2014;65(6):1154–61.

    Article  Google Scholar 

  11. Aksoy E, Taskin HE, Aliyev S, Mitchell J, Siperstein A, Berber E. Robotic versus laparoscopic adrenalectomy in obese patients. Surg Endosc. 2013;27(4):1233–6.

    Article  Google Scholar 

  12. Pineda-Solís K, Medina-Franco H, Heslin MJ. Robotic versus laparoscopic adrenalectomy: a comparative study in a high-volume center. Surg Endosc. 2013;27(2):599–602.

    Article  Google Scholar 

  13. Agrusa A, Romano G, Navarra G, et al. Innovation in endocrine surgery: robotic versus laparoscopic adrenalectomy. Meta-analysis and systematic literature review. Oncotarget. 2017;8(60):102392.

    Article  Google Scholar 

  14. Winter J, Talamini M, Stanfield C, et al. Thirty robotic adrenalectomies. Surg Endosc Other Interv Tech. 2006;20(1):119–24.

    Article  CAS  Google Scholar 

  15. Lee GS, Arghami A, Dy BM, McKenzie TJ, Thompson GB, Richards ML. Robotic single-site adrenalectomy. Surg Endosc. 2016;30(8):3351–6.

    Article  Google Scholar 

  16. Vidal O, Astudillo E, Valentini M, Ginesta C, García-Valdecasas JC, Fernandez-Cruz L. Single-incision transperitoneal laparoscopic left adrenalectomy. World J Surg. 2012;36(6):1395–9.

    Article  Google Scholar 

  17. White MA, Haber G-P, Autorino R, et al. Robotic laparoendoscopic single-site radical prostatectomy: technique and early outcomes. Eur Urol. 2010;58(4):544–50.

    Article  Google Scholar 

  18. Juo YY, Luka S, Obias V. Single-incision robotic colectomy (SIRC): current status and future directions. J Surg Oncol. 2015;112(3):321–5.

    Article  Google Scholar 

  19. Kang S-W, Chung WY. Transaxillary single-incision robotic neck dissection for metastatic thyroid cancer. Gland Surg. 2015;4(5):388.

    PubMed  PubMed Central  Google Scholar 

  20. Peng C-M, Liu H-C, Hsieh C-L, et al. Application of a commercial single-port device for robotic single-incision distal pancreatectomy: initial experience. Surg Today. 2018;48(7):680–6.

    Article  Google Scholar 

  21. Mercan S, Seven R, Ozarmagan S, Tezelman S. Endoscopic retroperitoneal adrenalectomy. Surgery. 1995;118(6):1071–6.

    Article  CAS  Google Scholar 

  22. Walz MK, Alesina PF, Wenger FA, et al. Posterior retroperitoneoscopic adrenalectomy—results of 560 procedures in 520 patients. Surgery. 2006;140(6):943–50.

    Article  Google Scholar 

  23. Miyake O, Yoshimura K, Yoshioka T, et al. Laparoscopic adrenalectomy. Eur Urol. 1998;33(3):303–7.

    Article  CAS  Google Scholar 

  24. Barczynski M, Konturek A, Nowak W. Randomized clinical trial of posterior retroperitoneoscopic adrenalectomy versus lateral transperitoneal laparoscopic adrenalectomy with a 5-year follow-up. Ann Surg. 2014;260(5):740–8.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank all nurses who assisted during the surgeries and who contributed to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwangsoon Kim MD or Sang-Wook Kang MD, PhD.

Ethics declarations

Disclosure

In A Lee, Jin Kyong Kim, Kwangsoon Kim, Sang-Wook Kang, Jandee Lee, Jong Ju Jeong, Kee-Hyun Nam, and Woong Youn Chung have no conflicts of interest or financial ties to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Video 1 Console video of a robotic posterior retroperitoneoscopic adrenalectomy with right adrenal tumor using the da Vinci SP robotic system. Using the Maryland dissector, retroperitoneal fatty tissue in the vessel free layer from Gerota’s fascia is pushed away. When found the kidney, we dissected deepen to kidney upper pole. Small vessels around the adrenal gland are coagulated using the Maryland dissector, and fatty tissue is dissected from the upper pole of the kidney, taking care of the accessory renal vessels. Following peri-renal hilar dissection, IVC exposure should be performed before adrenal dissection. On observing the IVC, the dissection is performed continuously along the IVC, and following IVC exposure, lateral dissection is performed. IVC inferior vena cava. (MP4 27059 kb)

Supplementary Video 2 Console video of a robotic posterior retroperitoneoscopic adrenalectomy with right adrenal tumor using the da Vinci SP robotic system. On exposing the central vein of the adrenal gland, a 5 mm Hemolock clip is applied to the adrenal vein. The adrenal gland is then completely mobilized and delivered through a port along with the tumor. (MP4 29524 kb)

Supplementary Video 3 Movement of the robotic arms and camera of the da Vinci SP robotic system. (MP4 25359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, I.A., Kim, J.K., Kim, K. et al. Robotic Adrenalectomy Using the da Vinci SP Robotic System: Technical Feasibility Comparison with Single-Port Access Using the da Vinci Multi-arm Robotic System. Ann Surg Oncol 29, 3085–3092 (2022). https://doi.org/10.1245/s10434-021-11208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-021-11208-2

Navigation