Skip to main content

Advertisement

Log in

FBXO50 Enhances the Malignant Behavior of Gastric Cancer Cells

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Challenges to our understanding the molecular mechanisms of the progression of gastric cancer (GC) must be overcome to facilitate the identification of novel biomarkers and therapeutic targets. In this article, we analyzed the expression of the gene encoding F-box-only 50 (FBXO50) and determined whether it contributes to the malignant phenotype of GC.

Methods

FBXO50 messenger RNA (mRNA) levels and copy numbers of the FBXO50 locus were determined in 10 GC cell lines and a nontumorigenic epithelial cell line. Polymerase chain reaction array analysis was performed to identify genes coordinately expressed with FBXO50. The effects of inhibiting FBXO50 on GC cell proliferation, adhesion, invasiveness, and migration were evaluated using a small interfering RNA targeted to FBXO50 mRNA. To evaluate the clinical significance of FBXO50 expression, we determined the levels of FBXO50 mRNA in tissues acquired from 200 patients with GC.

Results

The levels of FBXO50 mRNA were increased in five GC cell lines and positively correlated with those of ITGA5, ITGB1, MMP2, MSN, COL5A2, GNG11, and WNT5A. Copy number gain of the FBXO50 locus was detected in four GC cell lines. Inhibition of FBXO50 expression significantly decreased the proliferation, adhesion, migration, and invasiveness of GC cell lines. In clinical samples, high FBXO50 expression correlated with increased pT4, invasive growth, lymph node metastasis, and positive peritoneal lavage cytology. Patients with high FBXO50 expression had a significantly higher prevalence of recurrence after curative gastrectomy and were more likely to experience shorter overall survival.

Conclusions

FBXO50 may represent a biomarker for GC phenotypes and as a target for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  2. Kanda M, Murotani K, Kobayashi D, et al. Postoperative adjuvant chemotherapy with S-1 alters recurrence patterns and prognostic factors among patients with stage II/III gastric cancer: a propensity score matching analysis. Surgery. 2015;158:1573–80.

    Article  PubMed  Google Scholar 

  3. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388(10060):2654–64.

    Article  PubMed  Google Scholar 

  4. Songun I, Putter H, Kranenbarg EM, Sasako M, van de Velde CJ. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol. 2010;11:439–49.

    Article  PubMed  Google Scholar 

  5. Kanda M, Shimizu D, Tanaka H, et al. Significance of SYT8 for the detection, prediction, and treatment of peritoneal metastasis from gastric cancer. Ann Surg. 2016.

  6. Radke S, Pirkmaier A, Germain D. Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene. 2005;24:3448–58.

    Article  CAS  PubMed  Google Scholar 

  7. Yu Y, Sun L, Ren N, Li Y, Rong L, Zhao G. Down-expression of F box only protein 8 correlates with tumor grade and poor prognosis in human glioma. Int J Clin Exp Pathol. 2014;7:8071–76.

    PubMed  PubMed Central  Google Scholar 

  8. Zhang C, Li X, Adelmant G, et al. Peptidic degron in EID1 is recognized by an SCF E3 ligase complex containing the orphan F-box protein FBXO21. Proc Natl Acad Sci USA. 2015;112:15372–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cepeda D, Ng HF, Sharifi HR, et al. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Mol Med. 2013;5:1067–86.

    Article  PubMed  Google Scholar 

  10. Kanda M, Shimizu D, Tanaka H, et al. Metastatic pathway-specific transcriptome analysis identifies MFSD4 as a putative tumor suppressor and biomarker for hepatic metastasis in patients with gastric cancer. Oncotarget. 2016;7:13667–79.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kanda M, Tanaka C, Kobayashi D, et al. Epigenetic suppression of the immunoregulator MZB1 is associated with the malignant phenotype of gastric cancer. Int J Cancer. 2016;139:2290–98.

    Article  CAS  PubMed  Google Scholar 

  12. Kallio H, Tolvanen M, Janis J, et al. Characterization of non-specific cytotoxic cell receptor protein 1: a new member of the lectin-type subfamily of F-box proteins. PLoS One. 2011;6:e27152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanda M, Shimizu D, Fujii T, et al. Neurotrophin receptor-interacting melanoma antigen-encoding gene homolog is associated with malignant phenotype of gastric cancer. Ann Surg Oncol. 2016;23 Suppl 4:532–9.

    Article  PubMed  Google Scholar 

  14. Sasako M, Sakuramoto S, Katai H, et al. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol. 2011;29:4387–93.

    Article  CAS  PubMed  Google Scholar 

  15. Kanda M, Kobayashi D, Tanaka C, et al. Adverse prognostic impact of perioperative allogeneic transfusion on patients with stage II/III gastric cancer. Gastric Cancer. 2016;19:255–63.

    Article  CAS  PubMed  Google Scholar 

  16. Kanda M, Shimizu D, Fujii T, et al. Function and diagnostic value of Anosmin-1 in gastric cancer progression. Int J Cancer. 2016;138:721–30.

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka H, Kanda M, Shimizu D, et al. FAM46C serves as a predictor of hepatic recurrence in patients with resectable gastric cancer. Ann Surg Oncol. 2016.

  18. Kanda M, Shimizu D, Fujii T, et al. Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer. Int J Oncol. 2016;49:1195–202.

    CAS  PubMed  Google Scholar 

  19. Oya H, Kanda M, Sugimoto H, et al. Dihydropyrimidinase-like 3 is a putative hepatocellular carcinoma tumor suppressor. J Gastroenterol. 2015;50:590–600.

    Article  CAS  PubMed  Google Scholar 

  20. Chiorazzi M, Rui L, Yang Y, et al. Related F-box proteins control cell death in Caenorhabditis elegans and human lymphoma. Proc Natl Acad Sci USA. 2013;110:3943–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian X, Dai S, Sun J, et al. F-box protein FBXO22 mediates polyubiquitination and degradation of KLF4 to promote hepatocellular carcinoma progression. Oncotarget. 2015;6:22767–75.

    Article  PubMed  PubMed Central  Google Scholar 

  22. umimoto K, Akiyoshi S, Ueo H, et al. F-box protein FBXW7 inhibits cancer metastasis in a non-cell-autonomous manner. J Clin Investig. 2015;125:621–35.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kuuselo R, Simon R, Karhu R, et al. 19q13 amplification is associated with high grade and stage in pancreatic cancer. Genes Chromosomes Cancer. 2010;49:569–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith DH, Christensen IJ, Jensen NF, et al. An explorative analysis of ERCC1-19q13 copy number aberrations in a chemonaive stage III colorectal cancer cohort. BMC Cancer. 2013;13:489.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Orsetti B, Selves J, Bascoul-Mollevi C, et al. Impact of chromosomal instability on colorectal cancer progression and outcome. BMC Cancer. 2014;14:121.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu Q, Hou X, Xia J, et al. Emerging roles of PDGF-D in EMT progression during tumorigenesis. Cancer Treat Rev. 2013;39:640–46.

    Article  CAS  PubMed  Google Scholar 

  27. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bae GY, Choi SJ, Lee JS, et al. Loss of E-cadherin activates EGFR-MEK/ERK signaling, which promotes invasion via the ZEB1/MMP2 axis in non-small cell lung cancer. Oncotarget. 2013;4:2512–22.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Prasad CP, Chaurasiya SK, Guilmain W, Andersson T. WNT5A signaling impairs breast cancer cell migration and invasion via mechanisms independent of the epithelial-mesenchymal transition. J Exp Clin Cancer Res. 2016;35:144.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuro Kanda MD, PhD, FACS.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miwa, T., Kanda, M., Tanaka, H. et al. FBXO50 Enhances the Malignant Behavior of Gastric Cancer Cells. Ann Surg Oncol 24, 3771–3779 (2017). https://doi.org/10.1245/s10434-017-5882-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-017-5882-7

Keywords

Navigation