Skip to main content

Advertisement

Log in

Prevalence and Clinicopathological Characteristics of BRAF Mutations in Chinese Patients with Lung Adenocarcinoma

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

This study was designed to identify the prevalence of BRAF mutations in Chinese patients with lung adenocarcinoma, and to reveal the association between BRAF mutations and clinicopathological characteristics in these patients.

Methods

From October 2007 to February 2013, patients with newly diagnosed primary lung adenocarcinoma were detected for mutations in BRAF, EGFR, KRAS, HER2 and ALK. Clinicopathological characteristics, including sex, age, TNM stage, tumor differentiation, smoking status, histological subtypes, and survival information were analyzed.

Results

Of 1358 patients with lung adenocarcinoma, 20 patients were harboring BRAF mutations, including five BRAF V600E mutations and 15 BRAF non-V600E mutations. Among these, BRAF N581I and BRAF G593S were newly reported. BRAF mutations were associated with smoking status (odds ratio 3.28; 95 % CI 1.33–8.08; p = 0.008). In patients less than 60 years of age, BRAF mutations tended to have poor differentiation in tumor samples (70.0 vs. 35.1 %; p = 0.014), and were more likely to relapse (70 vs. 28 %; p = 0.008). A significant difference was found in relapse-free survival (RFS) between BRAF mutations and other mutations, but not in overall survival.

Conclusions

The prevalence of BRAF mutations in Chinese patients with lung adenocarcinoma was approximately 1.5 %. BRAF mutations were more frequent in current smokers. Patients harboring BRAF mutations had a higher rate of recurrence and worse RFS compared with other patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Joan HS, David H, Chandra P, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346(2):92–98.

    Article  Google Scholar 

  3. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12:175–80.

    Article  PubMed  CAS  Google Scholar 

  4. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8.

    Article  PubMed  CAS  Google Scholar 

  5. Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer: molecular and clinical predictors of outcome. N Engl J Med. 2005;353(2):133–44.

    Article  PubMed  CAS  Google Scholar 

  6. Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77.

    Article  PubMed  Google Scholar 

  7. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.

    Article  PubMed  CAS  Google Scholar 

  8. Ikawa S, Fukui M, Ueyama Y, et al. B-raf, a new member of the raf family, is activated by DNA rearrangement. Mol Cell Biol. 1988;8(6):2651.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6): 855–867.

    Article  PubMed  CAS  Google Scholar 

  10. Leicht DT, Balan V, Kaplun A, et al. Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta. 2007;1773(8):1196–1212.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  PubMed  CAS  Google Scholar 

  12. Ji H, Wang Z, Perera SA, et al. Mutations in BRAF and KRAS converge on activation of the mitogen activated protein kinase pathway in lung cancer mouse models. Cancer Res. 2007;67:4933–9.

    Article  PubMed  CAS  Google Scholar 

  13. Collisson EA, Campbell JD, Brooks AN, et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.

    Article  CAS  Google Scholar 

  14. Kobayashi M, Sonobe M, Takahashi T, et al. Clinical significance of BRAF gene mutations in patients with non-small cell lung cancer. Anticancer Res. 2011;31(12):4619–23.

    PubMed  CAS  Google Scholar 

  15. Marchetti A, Felicioni L, Malatesta S, et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol. 2011;29(26):3574–9.

    Article  PubMed  CAS  Google Scholar 

  16. Hsu KH, Ho CC, Hsia TC, et al. Identification of five driver gene mutations in patients with treatment-naive lung adenocarcinoma in Taiwan. PLoS One. 2015;10(3):e0120852.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wan P, Garnett M, Roe M, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–867.

    Article  PubMed  CAS  Google Scholar 

  18. Smalley KSM, Xiao M, Villanueva J, et al. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene. 2009;28:85–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Young K, Minchom A, Larkin J. BRIM-1, -2 and -3 trials: improved survival with vemurafenib in metastatic melanoma patients with a BRAF(V600E) mutation. Future Oncol. 2012;8(5):499–507.

    Article  PubMed  CAS  Google Scholar 

  20. Gautschi O, Pauli C, Strobel K, et al. A patient with BRAF V600E lung adenocarcinoma responding to vemurafenib. J Thorac Oncol. 2012;7(10):e23–4.

    Article  PubMed  Google Scholar 

  21. Schmid S, Siano M, Joerger M, et al. Response to dabrafenib after progression on vemurafenib in a patient with advanced BRAF V600E-mutant bronchial adenocarcinoma. Lung Cancer. 2015;87(1):85–7.

    Article  PubMed  CAS  Google Scholar 

  22. Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Sun Y, Ren Y, Fang Z, et al. Lung adenocarcinoma from East Asian never-smokers is a disease largely defined by targetable oncogenic mutant kinases. J Clin Oncol. 2010;28:4616–20.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kinno T, Tsuta K, Shiraishi K, et al. Clinicopathological features of nonsmall cell lung carcinomas with BRAF mutations. Ann Oncol. 2014;25(1):138–2.

    Article  PubMed  CAS  Google Scholar 

  25. Villaruz LC, Socinski MA, Abberbock S, et al. Clinicopathologic features and outcomes of patients with lung adenocarcinomas harboring BRAF mutations in the Lung Cancer Mutation Consortium. Cancer. 2015;121(3):448–56.

    Article  PubMed  CAS  Google Scholar 

  26. Litvak AM, Paik PK, Woo KM, et al. Clinical characteristics and course of 63 patients with BRAF mutant lung cancers. J Thorac Oncol. 2014;9(11):1669–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Chen D, Zhang LQ, Huang JF, et al. BRAF mutations in patients with non-small cell lung cancer: a systematic review and meta-analysis. PLoS One. 2014;9(6):e101354.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hammerman PS, Hayes DN, Wilkerson MD, et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

    Article  CAS  Google Scholar 

  29. Sasaki H, Maekawa M, Tatematsu T, et al. Increased BRAF copy number in lung adenocarcinoma. Oncol Lett. 2015;9(2):709–712.

    PubMed  PubMed Central  Google Scholar 

  30. Ciampi R, Zhu Z, Nikiforov YE. BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr Pathol. 2005;16:99–105.

    Article  PubMed  CAS  Google Scholar 

  31. Heidorn SJ, Milagre C, Whittaker S, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140:209–21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379(9829):1893–901.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Planchard D, Mazieres J, Reily GJ, et al. Interim results of phase II study BRF113928 of dabrafenib in BRAF V600E mutation-positive non-small cell lung cancer (NSCLC) patients. J Clin Oncol. 2013;31(Suppl).

  34. Robinson SD, O’Shaughnessy JA, Cowey CL, et al. BRAF V600E-mutated lung adenocarcinoma with metastases to the brain responding to treatment with vemurafenib. Lung Cancer. 2014;85(2):326–30.

    Article  PubMed  Google Scholar 

  35. Robert C, Flaherty KT, Hersey P, et al. METRIC phase III study: efficacy of trametinib (T), a potent and selective MEK inhibitor (MEKi), in progression-free survival (PFS) and overall survival (OS), compared with chemotherapy (C) in patients (pts) with BRAF V600E/K mutant advanced or metastatic melanoma (MM). J Clin Oncol. 2012;30(Suppl).

  36. Yang H, Higgins B, Kolinsky K, et al. RG7204 (PLX4032), a selective BRAF V600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res. 2010;70:5518–27.

    Article  PubMed  CAS  Google Scholar 

  37. Noeparast A, Verschelden G, Umelo I, et al. LBA2 investigation of non-V600 BRAF mutations commonly found in NSCLC for their sensitivity to dabrafenib or trametinib. Ann Oncol. 2015;26(Suppl 2): ii36.

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Natural Science Foundation of China (81330056, 81401886, 81401891, 81422029, 81472173, and 81372525), the Key Project of Science and Technology Commission of Shanghai Municipality (JGGG1302), and the Shen-Kang Center Project (SKMB1201). The authors would like to thank Xinghua Cheng for revising the manuscript.

Disclosures

Difan Zheng, Rui Wang, Yunjian Pan, Shanbo Zheng, Yang Zhang, Hang Li, Chao Cheng, Ranxia Gong, Yuan Li, Xuxia Shen, Haichuan Hu, Deng Cai, Xinghua Cheng, Yihua Sun, and Haiquan Chen declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihua Sun MD or Haiquan Chen MD.

Additional information

Difan Zheng, Rui Wang, and Yunjian Pan contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., Wang, R., Pan, Y. et al. Prevalence and Clinicopathological Characteristics of BRAF Mutations in Chinese Patients with Lung Adenocarcinoma. Ann Surg Oncol 22 (Suppl 3), 1284–1291 (2015). https://doi.org/10.1245/s10434-015-4640-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4640-y

Keywords

Navigation