Skip to main content

Advertisement

Log in

Prognostic Impact of Clinicopathological Features and Expression of Biomarkers Related to 18F-FDG Uptake in Esophageal Cancer

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Purpose

To analyze the association between pretreatment 18-F-fluoro-deoxyglucose (FDG) uptake and characteristics of aggressive tumor biology in predicting outcome in esophageal cancer (EC).

Methods

Tumor FDG-uptake was measured by maximum standardized uptake values (SUVmax) in 47 patients undergoing esophagectomy with curative intent. ROC analyses were used to predict an optimal SUVmax cutoff for survival. Expression of hexokinase-II (HK-II), glucose transporter I (GLUT-I), hypoxia inducible factor-1α (HIF-Iα), vascular endothelial growth factor-C (VEGF-C), p53, and proliferative activity (Ki-67) were correlated with SUVmax values and clinicopathological characteristics.

Results

A SUVmax > 3.67 predicted a significantly lower disease-free survival (DFS) and distant recurrence-free survival (p = 0.022 and p = 0.005). High HK-II expression was correlated with reduced SUVmax values (p = 0.002) and was significantly higher in esophageal adenocarcinoma compared with squamous cell carcinoma (p = 0.005). Preoperative high FDG uptake in primary tumors was associated with nodal metastases (pN1; Spearman correlation 0.39, p = 0.01). We found no positive correlation between SUVmax and GLUT-1, HK-1, HIF-Iα 1, VEGF-C, p53, and Ki-67 expression.

Conclusions

High preoperative FDG-uptake strongly predicts poor survival outcome and is associated with lymph node metastases in EC patients. HK-II expression was related to SUVmax and DFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  1. van Westreenen HL, Westerterp M, Bossuyt PM, et al. Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol. 2004;22:3805–12.

    Article  PubMed  Google Scholar 

  2. van Westreenen HL, Plukker JT, Cobben DC, Verhoogt CJ, Groen H, Jager PL. Prognostic value of the standardized uptake value in esophageal cancer. AJR Am J Roentgenol. 2005;185:436–40.

    Article  PubMed  Google Scholar 

  3. Schreurs LM, Janssens AC, Groen H, et al. Value of EUS in determining curative resectability in reference to CT and FDG-PET: the optimal sequence in preoperative staging of esophageal cancer? Ann Surg Oncol. 2011. doi:10.1245/s10434-011-1738-8

    PubMed  Google Scholar 

  4. Westerterp M, Van Westreenen HL, Sloof GW, Plukker JT, Van Lanschot JJ. Role of positron emission tomography in the (re-)staging of oesophageal cancer. Scand J Gastroenterol. 2006;243:116–22.

    Article  Google Scholar 

  5. Zhu WQ, Sun X, Xing L, et al. Oesophageal squamous cell carcinoma: relationship between fluorine-18 fludeoxyglucose positron emission tomography CT maximum standardised uptake value, metabolic tumour volume, and tumour, node and metastasis classification. Br J Radiol. 2012;85:e383–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Suzuki A, Xiao L, Hayashi Y, et al. Prognostic significance of baseline positron emission tomography and importance of clinical complete response in patients with esophageal or gastroesophageal junction cancer treated with definitive chemoradiotherapy. Cancer. 2011;117:4823–33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kobayashi M, Kaida H, Kawahara A, et al. The relationship between GLUT-1 and vascular endothelial growth factor expression and 18F-FDG uptake in esophageal squamous cell cancer patients. Clin Nucl Med. 2012;37:447–52.

    Article  PubMed  Google Scholar 

  8. Izuishi K, Yamamoto Y, Sano T, et al. Molecular mechanism underlying the detection of colorectal cancer by 18F-2-fluoro-2-deoxy-d-glucose positron emission tomography. J Gastrointest Surg. 2012;16:394–400.

    Article  PubMed  Google Scholar 

  9. Younes M, Lechago LV, Somoano JR, Mosharaf M, Lechago J. Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res. 1996;56:1164–7.

    PubMed  CAS  Google Scholar 

  10. Stein I, Neeman M, Shweiki D, Itin A, Keshet E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol. 1995;15:5363–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Takala H, Saarnio J, Wiik H, Ohtonen P, Soini Y. HIF-1alpha and VEGF are associated with disease progression in esophageal carcinoma. J Surg Res. 2011;167:41–8.

    Article  PubMed  CAS  Google Scholar 

  12. Katsuta M, Miyashita M, Makino H, et al. Correlation of hypoxia inducible factor-1alpha with lymphatic metastasis via vascular endothelial growth factor-C in human esophageal cancer. Exp Mol Pathol. 2005;78:123–30.

    Article  PubMed  CAS  Google Scholar 

  13. Bradbury PA, Zhai R, Ma C, et al. Vascular endothelial growth factor polymorphisms and esophageal cancer prognosis. Clin Cancer Res. 2009;15:4680–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Choi JY, Jang KT, Shim YM, et al. Prognostic significance of vascular endothelial growth factor expression and microvessel density in esophageal squamous cell carcinoma: comparison with positron emission tomography. Ann Surg Oncol. 2006;13:1054–62.

    Article  PubMed  Google Scholar 

  15. Kleespies A, Guba M, Jauch KW, Bruns CJ. Vascular endothelial growth factor in esophageal cancer. J Surg Oncol. 2004;87:95–104.

    Article  PubMed  CAS  Google Scholar 

  16. Okazawa T, Yoshida T, Shirai Y, et al. Expression of vascular endothelial growth factor C is a prognostic indicator in esophageal cancer. Hepatogastroenterology. 2008;55:1503–8.

    PubMed  CAS  Google Scholar 

  17. Tzao C, Lee SC, Tung HJ, et al. Expression of hypoxia-inducible factor (HIF)-1alpha and vascular endothelial growth factor (VEGF)-D as outcome predictors in resected esophageal squamous cell carcinoma. Dis Mark. 2008;25:141–8.

    Article  CAS  Google Scholar 

  18. Ueda S, Tsuda H, Saeki T, et al. Early metabolic response to neoadjuvant letrozole, measured by FDG PET/CT, is correlated with a decrease in the Ki67 labeling index in patients with hormone receptor-positive primary breast cancer: a pilot study. Breast Cancer. 2011;18:299–308.

    Article  PubMed  Google Scholar 

  19. Han B, Lin S, Yu LJ, Wang RZ, Wang YY. Correlation of (1)(8)F-FDG PET activity with expressions of survivin, Ki67, and CD34 in non-small-cell lung cancer. Nucl Med Commun. 2009;30:831–7.

    Article  PubMed  CAS  Google Scholar 

  20. Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet. 1998;20:54–7.

    Article  PubMed  CAS  Google Scholar 

  21. Arsic D, Cameron V, Ellmers L, Quan QB, Keenan J, Beasley S. Adriamycin disruption of the Shh-Gli pathway is associated with abnormalities of foregut development. J Pediatr Surg. 2004;39:1747–53.

    Article  PubMed  Google Scholar 

  22. Shi ST, Yang GY, Wang LD, et al. Role of p53 gene mutations in human esophageal carcinogenesis: results from immunohistochemical and mutation analyses of carcinomas and nearby non-cancerous lesions. Carcinogenesis. 1999;20:591–7.

    Article  PubMed  CAS  Google Scholar 

  23. Groheux D, Giacchetti S, Moretti JL, et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011;38:426–35.

    Article  PubMed  Google Scholar 

  24. Chen M, Huang J, Zhu Z, Zhang J, Li K. Systematic review and meta-analysis of tumor biomarkers in predicting prognosis in esophageal cancer. BMC Cancer. 2013;13:539.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000;56:337–44.

    Article  PubMed  CAS  Google Scholar 

  26. Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC curves. Biometrics. 2005;61:92–105.

    Article  PubMed  Google Scholar 

  27. Fukunaga T, Okazumi S, Koide Y, Isono K, Imazeki K. Evaluation of esophageal cancers using fluorine-18-fluorodeoxyglucose PET. J Nucl Med. 1998;39:1002–7.

    PubMed  CAS  Google Scholar 

  28. Hsu PK, Lin KH, Wang SJ, Huang CS, Wu YC, Hsu WH. Preoperative positron emission tomography/computed tomography predicts advanced lymph node metastasis in esophageal squamous cell carcinoma patients. World J Surg. 2011;35:1321–6.

    Article  PubMed  Google Scholar 

  29. Hsu WH, Hsu PK, Wang SJ, Lin KH, Huang CS, Hsieh CC, Wu YC. Positron emission tomography-computed tomography in predicting locoregional invasion in esophageal squamous cell carcinoma. Ann Thorac Surg. 2009;87:1564–8.

    Article  PubMed  Google Scholar 

  30. Haber RS, Rathan A, Weiser KR, et al. GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer. 1998;83:34–40.

    Article  PubMed  CAS  Google Scholar 

  31. Kawamura T, Kusakabe T, Sugino T, et al. Expression of glucose transporter-1 in human gastric carcinoma: association with tumor aggressiveness, metastasis, and patient survival. Cancer. 2001;92:634–41.

    Article  PubMed  CAS  Google Scholar 

  32. Younes M, Brown RW, Stephenson M, Gondo M, Cagle PT. Overexpression of Glut1 and Glut3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer. 1997;80:1046–51.

    Article  PubMed  CAS  Google Scholar 

  33. Sato-Tadano A, Suzuki T, Amari M, et al. Hexokinase II in breast carcinoma: a potent prognostic factor associated with hypoxia-inducible factor-1alpha and Ki-67. Cancer Sci. 2013;104:1380–8.

    Article  PubMed  CAS  Google Scholar 

  34. Qiu MZ, Han B, Luo HY, et al. Expressions of hypoxia-inducible factor-1alpha and hexokinase-II in gastric adenocarcinoma: the impact on prognosis and correlation to clinicopathologic features. Tumour Biol. 2011;32:159–66.

    Article  PubMed  CAS  Google Scholar 

  35. Ong LC, Jin Y, Song IC, Yu S, Zhang K, Chow PK. 2-[18F]-2-deoxy-d-glucose (FDG) uptake in human tumor cells is related to the expression of GLUT-1 and hexokinase II. Acta Radiol. 2008;49:1145–53.

    Article  PubMed  Google Scholar 

  36. Hamada K, Tomita Y, Qiu Y, et al. 18F-FDG-PET of musculoskeletal tumors: a correlation with the expression of glucose transporter 1 and hexokinase II. Ann Nucl Med. 2008;22:699–705.

    Article  PubMed  Google Scholar 

  37. Kato H, Takita J, Miyazaki T, et al. Correlation of 18-F-fluorodeoxyglucose (FDG) accumulation with glucose transporter (Glut-1) expression in esophageal squamous cell carcinoma. Anticancer Res. 2003;23:3263–72.

    PubMed  CAS  Google Scholar 

  38. Westerterp M, Sloof GW, Hoekstra OS, et al. 18FDG uptake in oesophageal adenocarcinoma: linking biology and outcome. J Cancer Res Clin Oncol. 2008;134:227–36.

    Article  PubMed  Google Scholar 

  39. Stahl A, Ott K, Weber WA, et al. FDG PET imaging of locally advanced gastric carcinomas: correlation with endoscopic and histopathological findings. Eur J Nucl Med Mol Imaging. 2003;30:288–95.

    Article  PubMed  CAS  Google Scholar 

  40. Takebayashi R, Izuishi K, Yamamoto Y, Kameyama R, Mori H, Masaki T, Suzuki Y. 18F]Fluorodeoxyglucose accumulation as a biological marker of hypoxic status but not glucose transport ability in gastric cancer. J Exp Clin Cancer Res. 2013;32:34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Sauter AW, Winterstein S, Spira D, et al. Multifunctional profiling of non-small cell lung cancer using 18F-FDG PET/CT and volume perfusion CT. J Nucl Med. 2012;53:521–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No commercial, financial or personal conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Th. M. Plukker MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreurs, L.M.A., Smit, J.K., Pavlov, K. et al. Prognostic Impact of Clinicopathological Features and Expression of Biomarkers Related to 18F-FDG Uptake in Esophageal Cancer. Ann Surg Oncol 21, 3751–3757 (2014). https://doi.org/10.1245/s10434-014-3848-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3848-6

Keywords

Navigation