Skip to main content

Advertisement

Log in

Anti-Prokineticin1 (PROK1) Monoclonal Antibody Suppresses Angiogenesis and Tumor Growth in Colorectal Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The prokineticin1 (PROK1) gene has been cloned as an angiogenic growth factor from endocrine gland cells. However, we have not known about potentials of anti-PROK1 monoclonal antibody in human cancers. Here we investigated how the anti-PROK1 monoclonal antibody (mAb; established by our department) would affect the high-PROK1-expressing colorectal cancer (CRC) cells in vitro and vivo.

Methods

We confirmed PROK1 protein expression in the CRC cells by performing immunohistochemical staining and measured the amount of soluble PROK1 protein. Next, we mixed the CRC cell culture fluid with the anti-PROK1mAb to examine angiogenic activity in vitro and in vivo. Additionally, we investigated whether the anti-PROK1mAb would affect the tumor-forming capability of high PROK1-expressing CRC cells implanted into mice.

Results

PROK1 protein expression was confirmed in 3 CRC cell lines, and soluble PROK1 protein was also confirmed in the CRC cell culture fluid. The culture fluid increased angiogenesis in vitro and vivo, whereas the anti-PROK1mAb suppressed angiogenesis. Subcutaneous tumor formation and tumor angiogenesis in mice were suppressed by the anti-PROK1mAb treatment. The anti-PROK1mAb significantly suppressed the number of CD31 stained cells in mice.

Conclusions

The in vitro and vivo experimental system indicated that the anti-PROK1mAb could suppress angiogenesis and tumor growth in the CRC strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  2. Watanabe T, Itabashi M, Shimada Y, Tanaka S, Ito Y, Ajioka Y, et al. Japanese society for cancer of the colon and rectum: Japanese society for cancer of the colon and rectum (JSCCR) guidelines 2010 for the treatment of colorectal cancer. Int J Clin Oncol. 2012;17:1–29.

    Article  PubMed  Google Scholar 

  3. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev. 2010;21:21–6.

    Article  CAS  PubMed  Google Scholar 

  5. Saltz LB, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.

    Article  CAS  PubMed  Google Scholar 

  6. Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.

  7. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    Article  CAS  PubMed  Google Scholar 

  8. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicenter, randomized, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–12.

    Article  CAS  PubMed  Google Scholar 

  9. Tabernero J, Van Cutsem E, Lakomy R, Prausová J, Ruff P, van Hazel GA, et al. Aflibercept versus placebo in combination with fluorouracil, leucovorin and irinotecan in the treatment of previously treated metastatic colorectal cancer: prespecified subgroup analyses from the VELOUR trial. Eur J Cancer. 2014;50:320–31.

    Article  CAS  PubMed  Google Scholar 

  10. LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature. 2001;412:877–84.

    Article  CAS  PubMed  Google Scholar 

  11. Nagano H, Goi T, Koneri K, Hirono Y, Katayama K, Yamaguchi A. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) expression in colorectal cancer. J Surg Oncol. 2007;96:605–10.

    Article  CAS  PubMed  Google Scholar 

  12. Goi T, Fujioka M, Satoh Y, Tabata S, Koneri K, Nagano H, et al. Angiogenesis and tumor proliferation/metastasis of human colorectal cancer cell line SW620 transfected with endocrine gland-derived-vascular endothelial growth factor, as a new angiogenic factor. Cancer Res. 2004;64:1906–10.

    Article  CAS  PubMed  Google Scholar 

  13. Ngan ES, Sit FY, Lee K, Miao X, Yuan Z, Wang W, et al. Implications of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 signaling in human neuroblastoma progression. Clin Cancer Res. 2007;13:868–75.

    Article  CAS  PubMed  Google Scholar 

  14. Pasquali D, Rossi V, Staibano S, De Rosa G, Chieffi P, Prezioso D, et al. The endocrine-gland-derived vascular endothelial growth factor (EG-VEGF)/prokineticin 1 and 2 and receptor expression in human prostate: up-regulation of EG-VEGF/prokineticin 1 with malignancy. Endocrinology. 2006;147:4245–51.

    Article  CAS  PubMed  Google Scholar 

  15. Morales A, Vilchis F, Chávez B, Chan C, Robles-Díaz G, Díaz-Sánchez V. Expression and localization of endocrine gland-derived vascular endothelial growth factor (EG-VEGF) in human pancreas and pancreatic adenocarcinoma. J Steroid Biochem Mol Biol. 2007;107:37–41.

    Article  CAS  PubMed  Google Scholar 

  16. Goi T, Yamaguchi A, Nakagawara G, Urano T, Shiku H, Furukawa K. Reduced expression of deleted colorectal carcinoma (DCC) protein in established colon cancers. Br J Cancer. 1998;77:466–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res. 2006;12:5018–22.

    Article  CAS  PubMed  Google Scholar 

  18. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  CAS  PubMed  Google Scholar 

  20. Robert GJ, Huch M, Clevers H. Stem cells and cancer of the stomach and intestine. Nat Rev Cancer. 2010;6:373–84.

    Google Scholar 

  21. Moumen M, Chiche A, Decraene C, Petit V, Gandarillas A, Deugnier MA, et al. Myc is required for β-catenin-mediated mammary stem cell amplification and tumorigenesis. Mol Cancer. 2013;12:132.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Olino K, Wada S, Edil BH, Pan X, Meckel K, Weber W, et al. Tumor-associated antigen expressing Listeria monocytogenes induces effective primary and memory T-cell responses against hepatic colorectal cancer metastases. Ann Surg Oncol. 2012;19:S597–607.

    Article  PubMed  Google Scholar 

  23. Kalluri R, Zeisberg M. Fibroblasts in cancer. Mol Oncol. 2006;4:392–401.

    Google Scholar 

  24. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Miller AR, McBride WH, Hunt K, Economou JS. Cytokine-mediated gene therapy for cancer. Ann Surg Oncol. 1994;1:436–50.

    Article  CAS  PubMed  Google Scholar 

  26. Goi T, Nakazawa T, Hirono Y, Yamaguchi A. Prokineticin 1 expression in gastrointestinal tumors. Anticancer Res. 2013;33:5311–5.

    PubMed  Google Scholar 

  27. Tabata S, Goi T, Nakazawa T, Kimura Y, Katayama K, Yamaguchi A. Endocrine gland-derived vascular endothelial growth factor strengthens cell invasion ability via prokineticin receptor 2 in colon cancer cell lines. Oncol. Rep. 2013;29:459–63.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The technical assistance of Ms. Saitoh M. with this research was appreciated. This work was supported in part by a Grant-in-Aid for Science Research from the Ministry of Education, Sports, Science, and Technology of Japan (No. 25462047).

Disclosure

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Goi MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goi, T., Nakazawa, T., Hirono, Y. et al. Anti-Prokineticin1 (PROK1) Monoclonal Antibody Suppresses Angiogenesis and Tumor Growth in Colorectal Cancer. Ann Surg Oncol 21 (Suppl 4), 665–671 (2014). https://doi.org/10.1245/s10434-014-3765-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3765-8

Keywords

Navigation