Skip to main content

Advertisement

Log in

Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Lung cancer is one of the most severe lethal malignancies, with approximately 1.6 million deaths every year. Lung cancer can be broadly categorised into small and non-small-cell lung cancer. The traditional chemotherapy is nonspecific, destroys healthy cells and produces systemic toxicity; targeted inhalation drug delivery in conjunction with nanoformulations has piqued interest as an approach for improving chemotherapeutic drug activity in the treatment of lung cancer. Our aim is to discuss the impact of polymer and lipid-based nanocarriers (polymeric nanoparticles, liposomes, niosomes, nanostructured lipid carriers, etc.) to treat lung cancer via the inhalational route of drug administration. This review also highlights the clinical studies, patent reports and latest investigations related to lung cancer treatment through the pulmonary route. In accordance with the PRISMA guideline, a systematic literature search was carried out for published works between 2005 and 2023. The keywords used were lung cancer, pulmonary delivery, inhalational drug delivery, liposomes in lung cancer, nanotechnology in lung cancer, etc. Several articles were searched, screened, reviewed and included. The analysis demonstrated the potential of polymer and lipid-based nanocarriers to improve the entrapment of drugs, sustained release, enhanced permeability, targeted drug delivery and retention impact in lung tissues. Patents and clinical observations further strengthen the translational potential of these carrier systems for human use in lung cancer. This systematic review demonstrated the potential of pulmonary (inhalational) drug delivery approaches based on nanocarriers for lung cancer therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jin KT, Lu ZB, Chen JY, Liu YY, Lan HR, Dong HY, et al. Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J Nanomater. 2020;2020:9184284.

    Google Scholar 

  2. Xu CN, Tian HY, Wang YB, Du Y, Chen J, Lin L, et al. Anti-tumor effects of combined doxorubicin and siRNA for pulmonary delivery. Chin Chem Lett. 2017;28:807–12.

    CAS  Google Scholar 

  3. Patil TS, Deshpande AS. Nanostructured lipid carriers-based drug delivery for treating various lung diseases: a state-of-the-art review. Int J Pharm. 2018;547:209–25.

    CAS  PubMed  Google Scholar 

  4. Kazmi I, Shaikh MAJ, Afzal O, Altamimi ASA, Almalki WH, Alzarea SI, et al. Chitosan-based nano drug delivery system for lung cancer. J Drug Deliv Sci Technol. 2023;81:104196.

    CAS  Google Scholar 

  5. Sristi Fatima M, Sheikh A, Almalki WH, Talegaonkar S, Dubey SK, et al. Recent advancement on albumin nanoparticles in treating lung carcinoma. J Drug Target. 2023;31:486–99.

    CAS  PubMed  Google Scholar 

  6. Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat Rev Dis Primers. 2021;7:1–20.

    Google Scholar 

  7. Yang S, Zhang Z, Wang Q. Emerging therapies for small cell lung cancer. J Hematol Oncol. 2019;12:1–11.

    Google Scholar 

  8. Vestergaard HH, Christensen MR, Lassen UN. A systematic review of targeted agents for non-small cell lung cancer. Acta Oncol. 2018;57:176–86.

    CAS  PubMed  Google Scholar 

  9. Abdulbaqi IM, Assi RA, Yaghmur A, Darwis Y, Mohtar N, Parumasivam T, et al. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: An update. Pharmaceuticals. 2021;14:725.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel AR, Chougule MB, Patlolla R, Wang G, Singh M. Efficacy of aerosolized celecoxib encapsulated nanostructured lipid carrier in non-small cell lung cancer in combination with docetaxel. Pharm Res. 2013;30:1435–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Loo CY, Traini D, Young PM, Parumasivam T, Lee WH. Pulmonary delivery of curcumin and quercetin nanoparticles for lung cancer – Part 2: toxicity and endocytosis. J Drug Deliv Sci Technol. 2023;82:104375.

    CAS  Google Scholar 

  12. Li L, Yu J, Chen Z, Zhang J. Improved primary lung carcinoma therapeutics utilizing a non-invasive approach of combinatorial drug loaded aerosolized dry inhaler powder. J Clust Sci. 2022;33:1781–91.

    CAS  Google Scholar 

  13. Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics. 2021;13:1151.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ho GF, Chai CS, Alip A, Wahid MI, Abdullah MM, Foo YC, et al. Real-world experience of first-line afatinib in patients with EGFR-mutant advanced NSCLC: a multicenter observational study. BMC Cancer. 2019;19:896.

    PubMed  PubMed Central  Google Scholar 

  15. Santarpia M, Daffinà MG, D’Aveni A, Marabello G, Liguori A, Giovannetti E, et al. Spotlight on ceritinib in the treatment of ALK+ NSCLC: design, development and place in therapy. Drug Des Devel Ther. 2017;11:2047–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wolf J, Seto T, Han JY, Reguart N, Garon EB, Groen HJ, et al. Capmatinib in MET exon 14–mutated or MET-amplified non–small-cell lung cancer. N Engl J Med. 2020;383:944–57.

    CAS  PubMed  Google Scholar 

  17. Sartore-Bianchi A, Pizzutilo EG, Marrapese G, Tosi F, Cerea G, Siena S. Entrectinib for the treatment of metastatic NSCLC: safety and efficacy. Expert Rev Anticancer Ther. 2020;3(20):333–41.

    Google Scholar 

  18. Saleh K, Khalife N, Felefly T. RET fusions in non-small-cell lung cancer: an emerging target reshaping the treatment paradigm. Future Oncol. 2021;17:1445–8.

    CAS  PubMed  Google Scholar 

  19. Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24:179–91.

    CAS  PubMed  Google Scholar 

  20. Wang Y, Zhang H, Hao J, Li B, Li M, Xiuwen W. Lung cancer combination therapy: co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv. 2016;23:1398–403.

    CAS  PubMed  Google Scholar 

  21. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309.

    PubMed  PubMed Central  Google Scholar 

  22. Kaur P, Garg T, Rath G, Murthy RR, Goyal AK. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design. Drug Deliv. 2016;23:1912–25.

    CAS  PubMed  Google Scholar 

  23. Jyoti K, Kaur K, Pandey RS, Jain UK, Chandra R, Madan J. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: in vitro and in vivo studies. J Colloid Interface Sci. 2015;445:219–30.

    CAS  PubMed  Google Scholar 

  24. Lu B, Sun L, Yan X, Ai Z, Xu J. Intratumoral chemotherapy with paclitaxel liposome combined with systemic chemotherapy: a new method of neoadjuvant chemotherapy for stage III unresectable non-small cell lung cancer. Med Oncol. 2015;32:1–8.

    Google Scholar 

  25. Asmawi AA, Salim N, Ngan CL, Ahmad H, Abdulmalek E, Masarudin MJ, et al. Excipient selection and aerodynamic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug Deliv Transl Res. 2019;9:543–54.

    CAS  PubMed  Google Scholar 

  26. Li S, Wang L, Li N, Liu Y, Su H. Combination lung cancer chemotherapy: design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin. Biomed Pharmacother. 2017;95:548–55.

    CAS  PubMed  Google Scholar 

  27. Liang Y, Tian B, Zhang J, Li K, Wang L, Han J, et al. Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer. Int J Nanomedicine. 2017;12:1699–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nanjwade BK, Adichwal SA, Gaikwad KR, Parikh KA, Manvi FV. Pulmonary drug delivery: novel pharmaceutical technologies breathe new life into the lungs. PDA J Pharm Sci Technol. 2011;65:513–34.

    CAS  PubMed  Google Scholar 

  29. Newman SP. Drug delivery to the lungs: challenges and opportunities. Ther Deliv. 2017;8:647–61.

    CAS  PubMed  Google Scholar 

  30. He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology. 2022;20:101.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Smola M, Vandamme T, Sokolowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomed. 2008;3:1–19.

    CAS  Google Scholar 

  32. Hickey AJ. Emerging trends in inhaled drug delivery. Adv Drug Deliv Rev. 2020;157:63–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. Med Devices (Auckl). 2015;8:131–9.

    PubMed  Google Scholar 

  34. de Boer AH, Molema G, Frijlink HW. Pulmonary drug delivery: delivery to and through the lung. In: Molema G, Meijer DKF, editors. Drug Targeting Organ-Specific Strategies. Wiley Online Library; 2001. p. 53–83. https://doi.org/10.1002/352760006X.ch3.

  35. Wang B, Hu L, Siahaan TJ. Drug delivery: principles and applications. 2nd ed. New Jersey: John Wiley & Sons; 2016.

  36. Tena AF, Clarà PC. Deposition of inhaled particles in the lungs. Arch Bronconeumol. 2012;48:240–6.

    Google Scholar 

  37. Patil JS, Sarasija S. Pulmonary drug delivery strategies: a concise, systematic review. Lung India. 2012;29:44–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. ElKasabgy NA, Adel IM, Elmeligy MF. Respiratory tract: structure and attractions for drug delivery using dry powder inhalers. AAPS Pharm Sci Tech. 2020;21:1–14.

    Google Scholar 

  39. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017;190:64–83.

    CAS  PubMed  Google Scholar 

  40. Lu H, Zhang S, Wang J, Chen Q. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems. Front Nutr. 2021;8:783831.

    PubMed  PubMed Central  Google Scholar 

  41. El-Sherbiny IM, El-Baz NM, Yacoub MH. Inhaled nano and microparticles for drug delivery. Global Cardiol Sci Pract. 2015;2015:2–14.

    Google Scholar 

  42. Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT, Shin BS, et al. Doxorubicin-loaded highly porous large PLGA microparticles as a sustained-release inhalation system for the treatment of metastatic lung cancer. Biomater. 2012;33:5574–83.

    CAS  Google Scholar 

  43. Alipour S, Montaseri H, Tafaghodi M. Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf B. 2010;81:521–9.

    CAS  Google Scholar 

  44. Liu J, Deng Y, Fu D, Yuan Y, Li Q, Shi L, et al. Sericin microparticles enveloped with metal-organic networks as a pulmonary targeting delivery system for intra-tracheally treating metastatic lung cancer. Bioact Mater. 2021;6:273–84.

    CAS  PubMed  Google Scholar 

  45. Chao P, Deshmukh M, Kutscher HL, Gao D, Rajan SS, Hu P, et al. Pulmonary targeting microparticulate camptothecin delivery system: anti-cancer evaluation in a rat orthotopic lung cancer model. Anticancer Drugs. 2010;21:65–76.

    CAS  PubMed  Google Scholar 

  46. Amararathna M, Goralski K, Hoskin DW, Rupasinghe HV. Pulmonary nano-drug delivery systems for lung cancer: current knowledge and prospects. J Lung Health Dis. 2019;3:11–28.

    Google Scholar 

  47. Li B, Li Q, Mo J, Dai H. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front Pharmacol. 2017;8:51.

    PubMed  PubMed Central  Google Scholar 

  48. Jiang ZM, Dai SP, Xu YQ, Li T, Xie J, Li C, et al. Crizotinib-loaded polymeric nanoparticles in lung cancer chemotherapy. Med Oncol. 2015;32:1–8.

    Google Scholar 

  49. Jung J, Park SJ, Chung HK, Kang HW, Lee SW, Seo MH, et al. Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;84:e77-83.

    CAS  PubMed  Google Scholar 

  50. Elbatanony RS, Parvathaneni V, Kulkarni NS, Shukla SK, Chauhan G, Kunda NK, et al. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)—development and in-vitro efficacy. Drug Deliv Transl Res. 2020;11:927–43.

    Google Scholar 

  51. Zhong T, Liu X, Li H, Zhang J. Co-delivery of sorafenib and crizotinib encapsulated with polymeric nanoparticles for the treatment of in vivo lung cancer animal model. Drug Deliv. 2021;28:2108–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang BC, Fu J, Watkins DN, Hanes J. Enhanced efficacy of local etoposide delivery by poly (ether-anhydride) particles against small cell lung cancer in vivo. Biomater. 2010;31:339–44.

    CAS  Google Scholar 

  53. Ding L, Tang S, Wyatt TA, Knoell DL, Oupický D. Pulmonary siRNA delivery for lung disease: review of recent progress and challenges. J Control Release. 2021;330:977–91.

    CAS  PubMed  Google Scholar 

  54. Ma Z, Wong SW, Forgham H, Esser L, Lai M, Leiske MN, et al. Aerosol delivery of star polymer-siRNA nanoparticles as a therapeutic strategy to inhibit lung tumor growth. Biomaterials. 2022;285:121539.

    CAS  PubMed  Google Scholar 

  55. Pham DT, Chokamonsirikun A, Phattaravorakarn V, Tiyaboonchai W. Polymeric micelles for pulmonary drug delivery: a comprehensive review. J Mater Sci. 2021;56:2016–36.

    CAS  Google Scholar 

  56. Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine. 2018;13:2921–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. He W, Xiao W, Zhang X, Sun Y, Chen Y, Chen Q, et al. Pulmonary-affinity paclitaxel polymer micelles in response to biological functions of ambroxol enhance therapeutic effect on lung cancer. Int J Nanomedicine. 2020;15:779–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rezazadeh M, Davatsaz Z, Emami J, Hasanzadeh F, Jahanian NA. Preparation and characterization of spray-dried inhalable powders containing polymeric micelles for pulmonary delivery of paclitaxel in lung cancer. J Pharm Sci. 2018;21:200–14.

    Google Scholar 

  59. Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int J Pharm. 2018;548:707–20.

    CAS  PubMed  Google Scholar 

  60. Gorain B, Choudhury H, Pandey M, Nair AB, Amin MCIM, Molugulu N, et al. Dendrimer-based nanocarriers in lung Cancer therapy. In: Kesharwani P, editor. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer. Academic Press; 2019. p. 161–92. https://doi.org/10.1016/B978-0-12-815720-6.00007-1.

  61. Holt GE, Daftarian P. Non-small-cell lung cancer homing peptide-labeled dendrimers selectively transfect lung cancer cells. Immunotherapy. 2018;10:1349–60.

    CAS  PubMed  Google Scholar 

  62. Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SR. Conjugation to poly (amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharmaceutics. 2016;13:2363–75.

    CAS  Google Scholar 

  63. Singh V, Sahebkar A, Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur Polym J. 2021;158:110683.

    CAS  Google Scholar 

  64. Ansari MT, Ramlan TA, Jamaluddin NN, Zamri N, Salfi R, Khan A, et al. Lipid-based nanocarriers for cancer and tumor treatment. Curr Pharm Des. 2020;26:4272–6.

    CAS  PubMed  Google Scholar 

  65. Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. Nanomedicine: Nanotechnol Biol Med. 2018;14:2023–50.

    CAS  Google Scholar 

  66. Liu Y, Bravo KM, Liu J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz. 2021;6:78–94.

    CAS  PubMed  Google Scholar 

  67. Olusanya TO, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs. Mol. 2018;23:907.

    Google Scholar 

  68. Wang Y, Fu M, Liu J, Yang Y, Yu Y, Li J, et al. Inhibition of tumor metastasis by targeted daunorubicin and dioscin codelivery liposomes modified with PFV for the treatment of non-small-cell lung cancer. Int J Nanomedicine. 2019;14:4071–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Karpuz M, Silindir-Gunay M, Ozer AY, Ozturk SC, Yanik H, Tuncel M, et al. Diagnostic and therapeutic evaluation of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer. Eur J Pharm Sci. 2021;156:105576.

    CAS  PubMed  Google Scholar 

  70. Zhang M, Li M, Du L, Zeng J, Yao T, Jin Y. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int J Pharm. 2020;578:119177.

    CAS  PubMed  Google Scholar 

  71. Sawant SS, Patil SM, Shukla SK, Kulkarni NS, Gupta V, Kunda NK. Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation. Drug Deliv Trans Res. 2022;12:2474–87.

    CAS  Google Scholar 

  72. Adel IM, ElMeligy MF, Abdelrahim ME, Maged A, Abdelkhalek AA, Abdelmoteleb AM, et al. Design and characterization of spray-dried proliposomes for the pulmonary delivery of curcumin. Int J Nanomedicine. 2021;16:2667–87.

    PubMed  PubMed Central  Google Scholar 

  73. Nsairat H, AlShaer W, Odeh F, Essawi E, Khater D, Al Bawab A, et al. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OpenNano. 2023;11:100132.

    Google Scholar 

  74. Loira-Pastoriza C, Vanvarenberg K, Ucakar B, Franco MM, Staub A, Lemaire M, et al. Encapsulation of a CpG oligonucleotide in cationic liposomes enhances its local antitumor activity following pulmonary delivery in a murine model of metastatic lung cancer. Int J Pharm. 2021;600:120504.

    CAS  PubMed  Google Scholar 

  75. Abeesh P, Bouvet P, Guruvayoorappan C. AS1411 aptamer tagged PEGylated liposomes as a smart nanocarrier for tumor-specific delivery of Withaferin A for mitigating pulmonary metastasis. Biomaterials Advances. 2023;154:213661.

    CAS  PubMed  Google Scholar 

  76. Okore VC, Attama AA, Ofokansi KC, Esimone CO, Onuigbo EB. Formulation and evaluation of niosomes. Indian J Pharm Sci. 2011;73:323–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater. 2016;2016:1–13. https://doi.org/10.1155/2016/7372306.

    Article  Google Scholar 

  78. Moazeni E, Gilani K, Sotoudegan F, Pardakhty A, Najafabadi AR, Ghalandari R, et al. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J Microencapsul. 2010;27:618–27.

    CAS  PubMed  Google Scholar 

  79. Saimi NIM, Salim N, Ahmad N, Abdulmalek E, Abdul Rahman MB. Aerosolized niosome formulation containing gemcitabine and cisplatin for lung cancer treatment: Optimization, characterization and in vitro evaluation. Pharmaceutics. 2021;13:59. https://doi.org/10.3390/pharmaceutics13010059.

    Article  CAS  Google Scholar 

  80. Shukla SK, Nguyen V, Goyal M, Gupta V. Cationically modified inhalable nintedanib niosomes: enhancing therapeutic activity against non-small-cell lung cancer. Nanomedicine. 2022;17:935–58.

    Google Scholar 

  81. Gurpreet K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci. 2018;80:781–9.

    CAS  Google Scholar 

  82. Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev Nutr Food Sci. 2019;24:225–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Amani A, York P, Chrystyn H, Clark BJ. Evaluation of a nanoemulsion-based formulation for respiratory delivery of budesonide by nebulizers. AAPS PharmSciTech. 2010;11:1147–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wahgiman NA, Salim N, Rahman MB, Ashari SE. Optimization of nanoemulsion containing gemcitabine and evaluation of its cytotoxicity towards human fetal lung fibroblast (MRC5) and human lung carcinoma (A549) cells. Int J Nanomedicine. 2019;14:7323–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Arbain NH, Salim N, Wui WT, Basri M, Rahman MB. Optimization of quercetin loaded palm oil ester based nanoemulsion formulation for pulmonary delivery. J Oleo Sci. 2018;67:933–40.

    CAS  PubMed  Google Scholar 

  86. Kim JE, Park YJ. Improved antitumor efficacy of hyaluronic acid-complexed paclitaxel nanoemulsions in treating non-small cell lung cancer. Biomol Ther. 2017;25:411–6.

    CAS  Google Scholar 

  87. Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, et al. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10:26777–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10:191. https://doi.org/10.3390/pharmaceutics10040191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bakhtiary Z, Barar J, Aghanejad A, Saei AA, Nemati E, EzzatiNazhadDolatabadi J, et al. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm. 2017;43:1244–53.

    CAS  PubMed  Google Scholar 

  90. Rosiere R, Van Woensel M, Gelbcke M, Mathieu V, Hecq J, Mathivet T, et al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol Pharmaceutics. 2018;15:899–910.

    CAS  Google Scholar 

  91. Wang JL, Hanafy MS, Xu H, Leal J, Zhai Y, Ghosh D, et al. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Int J Pharm. 2021;596:120215. https://doi.org/10.1016/j.ijpharm.2021.120215.

    Article  CAS  PubMed  Google Scholar 

  92. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613.

    CAS  PubMed  Google Scholar 

  93. Fang CL, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol. 2013;7:41–55.

    CAS  PubMed  Google Scholar 

  94. Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics. 2020;12:288. https://doi.org/10.3390/pharmaceutics12030288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Garbuzenko OB, Saad M, Pozharov VP, Reuhl KR, Mainelis G, Minko T. Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. Proc Natl Acad Sci. 2010;107:10737–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PN, Singh M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. JCR. 2010;144:233–41.

    CAS  Google Scholar 

  97. Tang Y, Zhang L, Sun R, Luo B, Zhou Y, Zhang Y, et al. Pulmonary delivery of mucus-traversing PF127-modified silk fibroin nanoparticles loading with quercetin for lung cancer therapy. AJPS. 2023;18:100833. https://doi.org/10.1016/j.ajps.2023.100833.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gonsalves A, Sorkhdini P, Bazinet J, Ghumman M, Dhamecha D, Zhou Y, et al. Development and characterization of lung surfactant-coated polymer nanoparticles for pulmonary drug delivery. Biomater Adv. 2023;150:213430. https://doi.org/10.1016/j.bioadv.2023.213430.

    Article  CAS  PubMed  Google Scholar 

  99. Liu S, Sun X, Lu H, Chen D, Li X, Li L, et al. Fullerene-based nanocomplex assists pulmonary delivery of siRNA for treating metastatic lung cancer. Nano Today. 2023;50:101878. https://doi.org/10.1016/j.nantod.2023.101878.

    Article  CAS  Google Scholar 

  100. Zimmermann CM, Baldassi D, Chan K, Adams NBP, Neumann A, Porras-Gonzalez DL, et al. Spray drying siRNA-lipid nanoparticles for dry powder pulmonary delivery. JCR. 2022;351:137–50.

    CAS  Google Scholar 

  101. Gao C, Zhang L, Xu M, Luo Y, Wang B, Kuang M, et al. Pulmonary delivery of liposomes co-loaded with SN38 prodrug and curcumin for the treatment of lung cancer. Eur J Pharm Biopharm. 2022;179:156–65.

    CAS  PubMed  Google Scholar 

  102. Huang S, Huang T, Meijia WU. Uses of ergosterol combined with gefitinib, preparation methods of liposome and freeze-dried powder thereof. US Patent 11123353, 2021.

  103. Wang H, Yin R. Erlotinib sustained-release preparation for treating non-small cell lung cancer. China Patent 111617048, 2023.

  104. Rajadurai M, Kulkarni P, Sevilimedu A, Saxena U. Magnetic nanoparticle formulations for targeted delivery of drugs to lungs for treatment of pulmonary diseases. Indian Patent 201741005560, 2018.

  105. Wei Z, Weihua L, Fan L. Targeting beta-cyclodextrin grafted chitosan ion cross-linked nanoparticle drug carrying system, and preparation method and applications thereof. China Patent 108721251, 2020.

  106. Zhu D-M, Guoqiang C. Dual loaded liposomal pharmaceutical formulations. European Patent 3265063, 2018.

  107. Zhijian H, Pengcheng W, Weifeng X, Liangliang C, Haoyuan L. Crizotinib and 17-AAG composite polymer nano-micelle injection as well as preparation method and application thereof. China Patent 109512821, 2021.

  108. Youn YS, Choi SY, Hochoi S, Choi SH, Soochoi J, Soo J. Self-assembling albumin nanoparticle for combined therapy of lung cancer and manufacturing method of same. Republic of Korea Patent 1015853450000, 2016.

  109. Yonghong Z, Xun Z. Lung cancer treatment bufalin liposome preparation and preparation method thereof. China Patent 103462897, 2013.

  110. Juergen B, Shimon B, Nir D, Nour K., Oshrat H-F. Nanoparticles for targeted delivery of active agents to the lung. European Patent 2257312, 2010.

  111. Carter KC, Mullen AB and Ferro VA. Pulmonary drug delivery with vesicles comprising non-ionic surfactants. WO Patent 2009156706, 2009.

  112. Wang Y, Ma R, Sun S, Hu Z, Li C, Lou M, et al. Modeling of inhaled corticosteroids delivery for topical croup treatment in pediatric upper airways. J Drug Deliv Sci Technol. 2023;85:104613.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Faculty of Pharmacy and Research Cell, Integral University, for continuous support and guidance during the writing process of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Nargis Ara and Abdul Hafeez. The first draft of the manuscript was written by Nargis Ara, and Abdul Hafeez reviewed and commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdul Hafeez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Theme: Inhaled Drug Delivery of Biologics for Therapeutic and Vaccination

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ara, N., Hafeez, A. Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review. AAPS PharmSciTech 25, 47 (2024). https://doi.org/10.1208/s12249-024-02758-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02758-1

Keywords

Navigation